Do you want to publish a course? Click here

Lectures on Faster-than-Light Travel and Time Travel

60   0   0.0 ( 0 )
 Added by Barak Shoshany
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

These lecture notes were prepared for a 25-hour course for advanced undergraduate students participating in Perimeter Institutes Undergraduate Summer Program. The lectures cover some of what is currently known about the possibility of superluminal travel and time travel within the context of established science, that is, general relativity and quantum field theory. Previous knowledge of general relativity at the level of a standard undergraduate-level introductory course is recommended, but all the relevant material is included for completion and reference. No previous knowledge of quantum field theory, or anything else beyond the standard undergraduate curriculum, is required. Advanced topics in relativity, such as causal structures, the Raychaudhuri equation, and the energy conditions are presented in detail. Once the required background is covered, concepts related to faster-than-light travel and time travel are discussed. After introducing tachyons in special relativity as a warm-up, exotic spacetime geometries in general relativity such as warp drives and wormholes are discussed and analyzed, including their limitations. Time travel paradoxes are also discussed in detail, including some of their proposed resolutions.



rate research

Read More

If time travel is possible, it seems to inevitably lead to paradoxes. These include consistency paradoxes, such as the famous grandfather paradox, and bootstrap paradoxes, where something is created out of nothing. One proposed class of resolutions to these paradoxes allows for multiple histories (or timelines), such that any changes to the past occur in a new history, independent of the one where the time traveler originated. We introduce a simple mathematical model for a spacetime with a time machine, and suggest two possible multiple-histories models, making use of branching spacetimes and covering spaces respectively. We use these models to construct novel and concrete examples of multiple-histories resolutions to time travel paradoxes, and we explore questions such as whether one can ever come back to a previously visited history and whether a finite or infinite number of histories is required. Interestingly, we find that the histories may be finite and cyclic under certain assumptions, in a way which extends the Novikov self-consistency conjecture to multiple histories and exhibits hybrid behavior combining the two. Investigating these cyclic histories, we rigorously determine how many histories are needed to fully resolve time travel paradoxes for particular laws of physics. Finally, we discuss how observers may experimentally distinguish between multiple histories and the Hawking and Novikov conjectures.
65 - Davide Fermi 2018
This work is essentially a review of a new spacetime model with closed causal curves, recently presented in another paper (Class. Quantum Grav. textbf{35}(16) (2018), 165003). The spacetime at issue is topologically trivial, free of curvature singularities, and even time and space orientable. Besides summarizing previous results on causal geodesics, tidal accelerations and violations of the energy conditions, here redshift/blueshift effects and the Hawking-Ellis classification of the stress-energy tensor are examined.
We discuss causality properties of extra-dimensional theories allowing for effectively superluminal bulk shortcuts. Such shortcuts for sterile neutrinos have been discussed as a solution to the puzzling LSND and MiniBooNE neutrino oscillation results. We focus here on the sub-category of asymmetrically warped brane spacetimes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In principle sterile neutrinos propagating in the extra dimension may be manipulated in a way to test the chronology protection conjecture experimentally.
Many historical people are captured only in old, faded, black and white photos, that have been distorted by the limitations of early cameras and the passage of time. This paper simulates traveling back in time with a modern camera to rephotograph famous subjects. Unlike conventional image restoration filters which apply independent operations like denoising, colorization, and superresolution, we leverage the StyleGAN2 framework to project old photos into the space of modern high-resolution photos, achieving all of these effects in a unified framework. A unique challenge with this approach is capturing the identity and pose of the photos subject and not the many artifacts in low-quality antique photos. Our comparisons to current state-of-the-art restoration filters show significant improvements and compelling results for a variety of important historical people.
That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wavevectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beams transverse spatial structure. Using time-correlated photon pairs we show a reduction of the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several microns over a propagation distance of the order of 1 m. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Introducing spatial structure to an optical beam, even for a single photon, reduces the group velocity of the light by a readily measurable amount.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا