Do you want to publish a course? Click here

Effect of anomalous magnetic moment of quarks on the phase structure and mesonic properties in the NJL model

84   0   0.0 ( 0 )
 Added by Snigdha Ghosh
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Employing a field dependent three-momentum cut-off regularization technique, we study the phase structure and mesonic masses using the $2$-flavour Nambu-Jona Lasinio model at finite temperature and density in presence of arbitrary external magnetic field. This approach is then applied to incorporate the effects of the anomalous magnetic moment(AMM) of quarks on constituent quark mass and thermodynamic observables as a function of temperature/baryonic density. The critical temperature for transition from chiral symmetry broken to the restored phase is observed to decrease with the external magnetic field, which can be classified as inverse magnetic catalysis, while an opposite behaviour is realized in the case of a vanishing magnetic moment, implying magnetic catalysis. These essential features are also reflected in the phase diagram. Furthermore, the properties of the low lying scalar and neutral pseudoscalar mesons are also studied in presence of a hot and dense magnetized medium including AMM of the quarks using random phase approximation. For non-zero values of magnetic field, we notice a sudden jump in the mass of the Goldstone mode at and above the Mott transition temperature which is found to decrease substantially with the increase in magnetic field when the AMM of the quarks are taken into consideration.



rate research

Read More

Dilepton production rate (DPR) from hot and dense quark matter is studied in the presence of an arbitrary external magnetic field using the 2-flavour Nambu--Jona-Lasinio (NJL) model. The anomalous magnetic moment (AMM) of the quarks is taken into consideration while calculating the constituent quark mass as well as the DPR from the thermo-magnetic medium. An infinite number of quark Landau levels is incorporated so that no approximations are made on the strength of the background magnetic field. The analytic structure of the two point vector current correlation function in the complex energy plane reveals that, in addition to the usual Unitary cut, a non-trival Landau cut appears in the physical kinematic domains solely due to the external magnetic field. Moreover, these kinematic domains of the Unitary and Landau cuts are found to be significantly modified due to the AMM of the quarks. With finite AMM of the quarks, for certain values of the external magnetic field, the kinematically forbidden gap between the Unitary and Landau cuts are shown to vanish leading to the generation of a continuous spectrum of dilepton emission over the whole invariant mass region not observed earlier.
Various thermodynamic quantities and the phase diagram of strongly interacting hot and dense magnetized quark matter are obtained with the $ 2 $-flavour Nambu-Jona-Lasinio model with Polyakov loop considering finite values of the anomalous magnetic moment (AMM) of the quarks. Susceptibilities associated with constituent quark mass and traced Polyakov loop are used to evaluate chiral and deconfinement transition temperatures. It is found that, inclusion of the AMM of the quarks in presence of the background magnetic field results in a substantial decrease in the chiral as well as deconfinement transition temperatures in contrast to an enhancement in the chiral transition temperature in its absence. Using standard techniques of finite temperature field theory, the two point thermo-magnetic mesonic correlation functions in the scalar ($sigma$) and neutral pseudoscalar ($pi^0$) channels are evaluated to calculate the masses of $sigma $ and $ pi^0 $ considering the AMM of the quarks.
The effective photon-quark-antiquark ($gamma q overline{q}$) vertex function is evaluated at finite temperature in the presence of an arbitrary external magnetic field using the two-flavor gauged Nambu--Jona-Lasinio (NJL) model in the mean field approximation. The lowest order diagram contributing to the magnetic form factor and the anomalous magnetic moment (AMM) of the quarks is calculated at finite temperature and external magnetic field using the imaginary time formalism of finite temperature field theory and the Schwinger proper time formalism. The Schwinger propagator including all the Landau levels with non-zero AMM of the dressed quarks is considered while calculating the loop diagram. Using sharp as well as smooth three momentum cutoff, we regularize the UV divergences arising from the vertex function and the parameters of our model are chosen to reproduce the well known phenomenological quantities at zero temperature and zero magnetic field, such as pion-decay constant ($f_pi$), vacuum quark condensate, vacuum pion mass ($m_pi$) as well as the magnetic moments of proton and neutron. We then study the temperature and magnetic field dependence of the AMM and constituent mass of the quark. We found that, the AMM as well as the constituent quark mass are large at the chiral symmetry broken phase in the low temperature region. Around the pseudo-chiral phase transition they decrease rapidly and at high temperatures both of them approach vanishingly small values in the symmetry restored phase.
A symmetry-preserving treatment of mesons, within a Dyson-Schwinger and Bethe-Salpeter equations approach, demands an interconnection between the kernels of the quark gap equation and meson Bethe-Salpeter equation. Appealing to those symmetries expressed by the vector and axial-vector Ward-Green-Takahashi identitiges (WGTI), we construct a two-body Bethe-Salpeter kernel and study its implications in the vector channel; particularly, we analyze the structure of the quark-photon vertex, which explicitly develops a vector meson pole in the timelike axis and the quark anomlaous magnetic moment term, as well as a variety of $rho$ meson properties: mass and decay constants, electromagnetic form factors, and valence-quark distribution amplitudes.
The drag and diffusion coefficients of heavy quarks propagating through quark gluon plasma (QGP) have been estimated by shielding both the electric and magnetic type infra-red divergences. The electric type screening in perturbative quantum chromodynamics (pQCD) has been widely studied and used in evaluating the diffusion coefficient of heavy quarks (HQs). To our knowledge the impact of magnetic screening in diffusion coefficients of HQs is not studied before. It is found that the effect of magnetic screening mass on the drag and diffusion coefficients of HQs is quite significant and its contribution should not be ignored for explaining the experimental data of heavy quark observables.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا