Do you want to publish a course? Click here

Spin Hall effect in prototype Rashba ferroelectrics GeTe and SnTe

113   0   0.0 ( 0 )
 Added by Jagoda Slawinska
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferroelectric Rashba semiconductors (FERSC) have recently emerged as a promising class of spintronics materials. The peculiar coupling between spin and polar degrees of freedom responsible for several exceptional properties, including ferroelectric switching of Rashba spin texture, suggests that the electrons spin could be controlled by using only electric fields. In this regard, recent experimental studies revealing charge-to-spin interconversion phenomena in two prototypical FERSC, GeTe and SnTe, appear extremely relevant. Here, by employing density functional theory calculations, we investigate spin Hall effect (SHE) in these materials and show that it can be large either in ferroelectric or paraelectric structure. We further explore the compatibility between doping required for the practical realization of SHE in semiconductors and polar distortions which determine Rashba-related phenomena in FERSC, but which could be suppressed by free charge carriers. Based on the analysis of the lone pairs which drive ferroelectricity in these materials, we have found that the polar displacements in GeTe can be sustained up to a critical hole concentration of over $sim 10^{21}$/cm$^{3}$, while the tiny distortions in SnTe vanish at a minimal level of doping. Finally, we have estimated spin Hall angles for doped structures and demonstrated that the spin Hall effect could be indeed achieved in a polar phase. We believe that the confirmation of spin Hall effect, Rashba spin textures and ferroelectricity coexisting in one material will be helpful for design of novel multifunctional spintronics devices operating without magnetic fields.



rate research

Read More

GeTe has been proposed as the father compound of a new class of functional materials displaying bulk Rashba effects coupled to ferroelectricity: ferroelectric Rashba semiconductors. In nice agreement with first principle calculations, we show by angular resolved photoemission and piezo-force microscopy that GeTe displays surface and bulk Rashba bands arising from the intrinsic inversion symmetry breaking provided by the remanent ferroelectric polarization. This work points to the possibility to control the spin chirality of bands in GeTe by acting on its ferroelectric polarization.
Controlling charge-spin current conversion by electric fields is crucial in spintronic devices, which can be realized in diatom ferroelectric semiconductor GeTe where it is established that ferroelectricity can change the spin texture. We demonstrated that the spin Hall conductivity (SHC) can be further tuned by ferroelectricity based on the density functional theory calculations. The spin texture variation driven by the electric fields was elucidated from the symmetry point of view, highlighting the interlocked spin and orbital degrees of freedom. We observed that the origin of SHC can be attributed to the Rashba effect and the intrinsic spin-orbit coupling. The magnitude of one component of SHC {sigma}_xy^z can reach as large as 100 {hbar}/e/({Omega}cm) in the vicinity of the band edge, which is promising for engineering spintronic devices. Our work on tunable spin transport properties via the ferroelectric polarization brings novel assets into the field of spintronics.
464 - Ye Du , Saburo Takahashi , 2018
We analyze the experimentally obtained spin-current-related magnetoresistance in epitaxial Pt/Co bilayers by using a drift-diffusion model that incorporates both bulk spin Hall effect and interfacial Rashba-Edelstein effect (REE). The magnetoresistance analysis yields, for the Pt/Co interface, a temperature-independent Rashba parameter in the order of 1e-11 eV m that agrees with theoretical calculations, along with an effective interfacial REE thickness of several angstroms which is in overall consistency with our previous spin-orbit torque analysis. In particular, our results suggest that both bulk and interface charge-spin current inter-
A comprehensive mapping of the spin polarization of the electronic bands in ferroelectric a-GeTe(111) films has been performed using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10.000 data points (voxels). A Rashba type splitting of both surface and bulk bands with opposite spin helicity of the inner and outer Rashba bands is found revealing a complex spin texture at the Fermi energy. The switchable inner electric field of GeTe implies new functionalities for spintronic devices.
Recently large Rashba-like spin splitting has been observed in certain bulk ferroelectrics. In contrast with the relativistic Rashba effect, the chiral spin texture and large spin-splitting of the electronic bands depend strongly on the character of the band and atomic spin-orbit coupling. We establish that this can be traced back to the so-called orbital Rashba effect, also in the bulk. This leads to an additional dependence on the orbital composition of the bands, which is crucial for a complete picture of the effect. Results from first-principles calculations on ferroelectic GeTe verify the key predictions of the model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا