We study wireless collaborative machine learning (ML), where mobile edge devices, each with its own dataset, carry out distributed stochastic gradient descent (DSGD) over-the-air with the help of a wireless access point acting as the parameter server (PS). At each iteration of the DSGD algorithm wireless devices compute gradient estimates with their local datasets, and send them to the PS over a wireless fading multiple access channel (MAC). Motivated by the additive nature of the wireless MAC, we propose an analog DSGD scheme, in which the devices transmit scal