Do you want to publish a course? Click here

The Power of Comparisons for Actively Learning Linear Classifiers

49   0   0.0 ( 0 )
 Added by Max Hopkins
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the world of big data, large but costly to label datasets dominate many fields. Active learning, a semi-supervised alternative to the standard PAC-learning model, was introduced to explore whether adaptive labeling could learn concepts with exponentially fewer labeled samples. While previous results show that active learning performs no better than its supervised alternative for important concept classes such as linear separators, we show that by adding weak distributional assumptions and allowing comparison queries, active learning requires exponentially fewer samples. Further, we show that these results hold as well for a stronger model of learning called Reliable and Probably Useful (RPU) learning. In this model, our learner is not allowed to make mistakes, but may instead answer I dont know. While previous negative results showed this model to have intractably large sample complexity for label queries, we show that comparison queries make RPU-learning at worst logarithmically more expensive in both the passive and active regimes.



rate research

Read More

We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring trick, that discovers the subspace spanned by the classifiers parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency.
We train a network to generate mappings between training sets and classification policies (a classifier generator) by conditioning on the entire training set via an attentional mechanism. The network is directly optimized for test set performance on an training set of related tasks, which is then transferred to unseen test tasks. We use this to optimize for performance in the low-data and unsupervised learning regimes, and obtain significantly better performance in the 10-50 datapoint regime than support vector classifiers, random forests, XGBoost, and k-nearest neighbors on a range of small datasets.
Group-fairness in classification aims for equality of a predictive utility across different sensitive sub-populations, e.g., race or gender. Equality or near-equality constraints in group-fairness often worsen not only the aggregate utility but also the utility for the least advantaged sub-population. In this paper, we apply the principles of Pareto-efficiency and least-difference to the utility being accuracy, as an illustrative example, and arrive at the Rawls classifier that minimizes the error rate on the worst-off sensitive sub-population. Our mathematical characterization shows that the Rawls classifier uniformly applies a threshold to an ideal score of features, in the spirit of fair equality of opportunity. In practice, such a score or a feature representation is often computed by a black-box model that has been useful but unfair. Our second contribution is practical Rawlsian fair adaptation of any given black-box deep learning model, without changing the score or feature representation it computes. Given any score function or feature representation and only its second-order statistics on the sensitive sub-populations, we seek a threshold classifier on the given score or a linear threshold classifier on the given feature representation that achieves the Rawls error rate restricted to this hypothesis class. Our technical contribution is to formulate the above problems using ambiguous chance constraints, and to provide efficient algorithms for Rawlsian fair adaptation, along with provable upper bounds on the Rawls error rate. Our empirical results show significant improvement over state-of-the-art group-fair algorithms, even without retraining for fairness.
Learning useful representations of complex data has been the subject of extensive research for many years. With the diffusion of Deep Neural Networks, Variational Autoencoders have gained lots of attention since they provide an explicit model of the data distribution based on an encoder/decoder architecture which is able to both generate images and encode them in a low-dimensional subspace. However, the latent space is not easily interpretable and the generation capabilities show some limitations since images typically look blurry and lack details. In this paper, we propose the Introspective Variational Classifier (IntroVAC), a model that learns interpretable latent subspaces by exploiting information from an additional label and provides improved image quality thanks to an adversarial training strategy.We show that IntroVAC is able to learn meaningful directions in the latent space enabling fine-grained manipulation of image attributes. We validate our approach on the CelebA dataset.
148 - Rui Lu , Gao Huang , Simon S. Du 2021
While multitask representation learning has become a popular approach in reinforcement learning (RL), theoretical understanding of why and when it works remains limited. This paper presents analyses for the statistical benefit of multitask representation learning in linear Markov Decision Process (MDP) under a generative model. In this paper, we consider an agent to learn a representation function $phi$ out of a function class $Phi$ from $T$ source tasks with $N$ data per task, and then use the learned $hat{phi}$ to reduce the required number of sample for a new task. We first discover a emph{Least-Activated-Feature-Abundance} (LAFA) criterion, denoted as $kappa$, with which we prove that a straightforward least-square algorithm learns a policy which is $tilde{O}(H^2sqrt{frac{mathcal{C}(Phi)^2 kappa d}{NT}+frac{kappa d}{n}})$ sub-optimal. Here $H$ is the planning horizon, $mathcal{C}(Phi)$ is $Phi$s complexity measure, $d$ is the dimension of the representation (usually $dll mathcal{C}(Phi)$) and $n$ is the number of samples for the new task. Thus the required $n$ is $O(kappa d H^4)$ for the sub-optimality to be close to zero, which is much smaller than $O(mathcal{C}(Phi)^2kappa d H^4)$ in the setting without multitask representation learning, whose sub-optimality gap is $tilde{O}(H^2sqrt{frac{kappa mathcal{C}(Phi)^2d}{n}})$. This theoretically explains the power of multitask representation learning in reducing sample complexity. Further, we note that to ensure high sample efficiency, the LAFA criterion $kappa$ should be small. In fact, $kappa$ varies widely in magnitude depending on the different sampling distribution for new task. This indicates adaptive sampling technique is important to make $kappa$ solely depend on $d$. Finally, we provide empirical results of a noisy grid-world environment to corroborate our theoretical findings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا