No Arabic abstract
Cosmic-ray electrons (CREs) originating from the star-forming discs of spiral galaxies frequently form extended radio haloes that are best observable in edge-on galaxies. For the present study we selected two nearby edge-on galaxies from the CHANG-ES survey, NGC 891 and 4565, which differ largely in halo size and SFR. To figure out how such differences are related to the CRE transport in disc and halo, we use wide-band 1.5 and 6 GHz VLA observations obtained in the B, C, and D configurations, and combine the 6 GHz images with Effelsberg observations to correct for missing short spacings. We study the spatially resolved non-thermal spectral index distribution in terms of CRE spectral ageing, compute total magnetic field strengths assuming energy equipartition between CRs and magnetic fields, and also determine synchrotron scale heights. Based on the vertical profiles of synchrotron intensity and spectral index, we create purely advective and purely diffusive CRE transport models by numerically solving the 1D diffusion-loss equation. In particular, we investigate for the first time the radial dependence of synchrotron and magnetic field scale heights, advection speeds and diffusion coefficients in these two galaxies. We find the spectral index distribution of NGC 891 to be mostly consistent with continuous CRE injection, while in NGC 4565 the local synchrotron spectra are more in line with discrete-epoch CRE injection (JP or KP models). This implies that CRE injection timescales are lower than the synchrotron cooling timescales. The scale height of NGC 891 increases with radius, indicating that synchrotron losses are significant. NGC 891 is probably dominated by advective CRE transport at a velocity of $gtrsim150,mathrm{km,s^{-1}}$. In contrast, NGC 4565 is diffusion-dominated up to $z=1$ kpc or higher, with a diffusion coefficient of $geq2times10^{28},mathrm{cm^2,s^{-1}}$.
We present a study of the globular cluster systems of two edge-on spiral galaxies, NGC4565 and NGC5907, from WFPC2 images in the F450W and F814W filters. The globular cluster systems of both galaxies appear to be similar to the Galactic globular cluster system. In particular, we derive total numbers of globular clusters of N_{GC}(4565)= 204+/-38 {+87}{-53} and N_{GC}(5907)=170+/-41 {+47}{-72} (where the first are statistical, the second potential systematic errors) for NGC4565 and NGC5907, respectively. This determination is based on a comparison to the Milky Way system, for which we adopt a total number of globular clusters of 180+/-20. The specific frequency of both galaxies is S_N~0.6: indistinguishable from the value for the Milky Way. The similarity in the globular cluster systems of the two galaxies is noteworthy since they have significantly different thick disks and bulge-to-disk ratios. This would suggest that these two components do not play a major role in the building up of a globular cluster system around late-type galaxies.
NGC 4631 is an interacting galaxy that exhibits one of the largest, gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and cosmic-ray propagation properties of its disk and halo emission with new radio continuum data. Radio continuum observations of NGC 4631 were performed with the Karl G. Jansky Very Large Array at C-band (5.99 GHz) in the C and D array configurations, and at L-band (1.57 GHz) in the B, C, and D array configurations. Complementary observations of NGC 4631 with the Effelsberg telescope were performed at 1.42 and 4.85 GHz. The interferometric total intensity data were combined with the single-dish Effelsberg data in order to recover the missing large-scale total power emission. The thermal and nonthermal components of the total radio emission were separated by estimating the thermal contribution through the extinction-corrected H$alpha$ emission. The H$alpha$ radiation was corrected for extinction using a linear combination of the observed H$alpha$ and 24 $mu$m data. NGC 4631 has a global thermal fraction at 5.99 (1.57) GHz of 14$pm$3% (5.4$pm$1.1%). The mean scale heights of the total emission in the radio halo (thick disk) at 5.99 (1.57) GHz are $1.79pm0.54$ kpc ($1.75pm0.27$ kpc) and have about the same values for the synchrotron emission. The total magnetic field of NGC 4631 has a mean strength of $rm{langle B_{eq}rangle} simeq 9 rm{mu G}$ in the disk, and a mean strength of $rm{langle B_{eq}rangle}~simeq 7~rm{mu G}$ in the halo. We also studied a double-lobed background radio galaxy southwest of NGC 4631, which is an FR~II radio galaxy according to the distribution of spectral index across the lobes. From the halo scale heights we estimated that the radio halo is escape-dominated with convective cosmic ray propagation, and conclude that there is a galactic wind in the halo of NGC 4631.
We present detections of 21-cm emission from neutral hydrogen (HI) in the circumgalactic medium (CGM) of the local edge-on galaxies NGC 891 and NGC 4565 using the Robert C. Byrd Green Bank Telescope (GBT). With our 5$sigma$ sensitivity of $8.2 times 10^{16}$ cm$^{-2}$ calculated over a 20 km s$^{-1}$ channel, we achieve $>5sigma$ detections out to $90-120$ kpc along the minor axes. The velocity width of the CGM emission is as large as that of the disk $approx 500$ km s$^{-1}$, indicating the existence of a diffuse component permeating the halo. We compare our GBT measurements with interferometric data from the Westerbork Synthesis Radio Telescope (WSRT). The WSRT maps the HI emission from the disk at high S/N but has limited surface brightness sensitivity at the angular scales probed with the GBT. After convolving the WSRT data to the spatial resolution of the GBT (FWHM = 9.1$$), we find that the emission detected by the WSRT accounts for $48^{+15}_{-25}$% ($58^{+4}_{-18}$%) of the total flux recovered by the GBT from the CGM of NGC 891(NGC 4565). The existence of significant GBT-only flux suggests the presence of a large amount of diffuse, low column density HI emission in the CGM. For reasonable assumptions, the extended diffuse HI could account for $5.2pm0.9$% and $2.0pm0.8$% of the total HI emission of NGC 891 and NGC 4565.
We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/SPIRE (250, 350, 500 micron) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, SDSS, GALEX) to analyze its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FitSKIRT. To account for the observed UV and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimeter emission long wards of 100 micron is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Mdust ~ 2.9e+8 Msun) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimeter observations and hardly comtribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 is consistent with that of similar analyses of other edge-on spirals.
We present 21-cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. These models provide insight concerning both the morphology and kinematics of HI above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended HI halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40 +5/-20 km/s/kpc and -30 +5/-30 km s/kpc in the approaching and receding halves, respectively. This lag is only seen within the inner ~4.75 (14.9 kpc) on the approaching half and ~4.25 (13.4 kpc) on the receding, making this a radially shallowing lag, which is now seen in the HI layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, HI is found in two companion galaxies, one of which is clearly interacting with NGC 4565.