Regular Graphs with Minimum Spectral Gap


Abstract in English

Aldous and Fill conjectured that the maximum relaxation time for the random walk on a connected regular graph with $n$ vertices is $(1+o(1)) frac{3n^2}{2pi^2}$. This conjecture can be rephrased in terms of the spectral gap as follows: the spectral gap (algebraic connectivity) of a connected $k$-regular graph on $n$ vertices is at least $(1+o(1))frac{2kpi^2}{3n^2}$, and the bound is attained for at least one value of $k$. Based upon previous work of Brand, Guiduli, and Imrich, we prove this conjecture for cubic graphs. We also investigate the structure of quartic (i.e. 4-regular) graphs with the minimum spectral gap among all connected quartic graphs. We show that they must have a path-like structure built from specific blocks.

Download