Do you want to publish a course? Click here

Evolution of Kaluza-Klein Like Wet Dark Fluid in $f(R,T)$ Theory of Gravitation

129   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we study the essence of $f(R,T)$ gravitation theory in five dimensional Universe and see the role of dark energy in the form of wet dark fluid in such a Universe. It is found that the dark energy is not exaggerated in contributing to the accelerating expansion of the Universe though the expansion is inherent as a result of the theory itself and due to the geometric contribution of matter. It is interesting to see that in some model it is found that there was some era before the beginning of the present era, and some of the model Universe came out to be either oscillatory or cyclic. Some of the models are seen to go to $Lambda CDM$ models in late future as in Einstein gravitation theory, starting the evolution with a big bang. Most of the models undergo early inflation as well as late time accelerating expansion thus defining as good models for real astrophysical situations, with dark energy playing fundamental role in these Universe.



rate research

Read More

Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einsteins field equations in $f(R,T)$ gravity are derived. To obtain the exact wormhole solutions, the relations $p_t=omegarho$ and $p_r=sinh(r)p_t$, where $rho$ is the energy density, $p_r$ is the radial pressure and $p_t$ is the tangential pressure, are used. Other than these relations, two forms of shape function defined in literature are used, and their suitability is examined by exploring the regions of validity of null, weak, strong and dominant energy conditions . Consequently, the radius of the throat or the spherical region, with satisfied energy conditions, is determined and the presence of exotic matter is minimized.
The $f(R,T)$ theory of gravitation is an extended theory of gravitation in which the gravitational action contains both the Ricci scalar $R$ and the trace of energy momentum tensor $T$ and hence the cosmological models based on $f(R,T)$ gravity are eligible to describing late time acceleration of present universe. In this paper, we investigate an accelerating model of flat universe with linearly varying deceleration parameter (LVDP). We apply the linearly time varying law for deceleration parameters that generates a model of transitioning universe from early decelerating phase to current accelerating phase. We carry out the state-finder and Om(z) analysis, and obtain that LVDP model have consistency with astrophysical observations. We also discuss profoundly the violation of energy-momentum conservation law in $f(R,T)$ gravity and dynamical behavior of the model.
Anisotropic cosmological models are constructed in $f(R,T)$ gravity theory to investigate the dynamics of universe concerning the late time cosmic acceleration. Using a more general and simple approach, the effect of the coupling constant and anisotropy on the cosmic dynamics have been investigated. Cosmic anisotropy is found affect substantially the cosmic dynamics.
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accomplishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $lambda$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $lambda=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $omega_{r}$, the tangential state parameter $omega_{t}$ and the anisotropy parameter $triangle$ describing the geometry of the universe, has been presented for different values of $lambda$ chosen in $[-100,100]$.
In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level one KK particles are within five percent of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا