Do you want to publish a course? Click here

Magnetically charged AdS5 black holes from class S theories on hyperbolic 3-manifolds

59   0   0.0 ( 0 )
 Added by Dongmin Gang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study the twisted index of 4d $mathcal{N}$ = 2 class S theories on a closed hyperbolic 3-manifold $M_3$. Via 6d picture, the index can be written in terms of topological invariants called analytic torsions twisted by irreducible flat connections on the 3-manifold. Using the topological expression, we determine the full perturbative 1/N expansion of the twisted index. The leading part nicely matches the Bekestein-Hawking entropy of a magnetically charged black hole in the holographic dual $AdS_5$ with $AdS_2times M_3$ near-horizon.



rate research

Read More

141 - Imtak Jeon , Shailesh Lal 2017
We compute logarithmic corrections to the entropy of a magnetically charged extremal black hole in AdS4 x S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.
We study N =4 super Yang-Mills theories on a three sphere with two kinds of chemical potentials. One is associated with the R-symmetry and the other with the rotational symmetry of S^3 (SO(4) symmetry). These correspond to the charged Kerr-AdS black holes via AdS/CFT. The exact partition functions at zero coupling are computed and the thermodynamical properties are studied. We find a nontrivial gap between the confinement/deconfinement transition line and the boundary of the phase diagram when we include more than four chemical potentials. In the dual gravity, we find such a gap in the phase diagram to study the thermodynamics of the charged Kerr-AdS black hole. This shows that the qualitative phase structures agree between the both sides. We also find that the ratio of the thermodynamical quantities is almost well-known factor 3/4 even at the low temperature.
146 - M.H. Dehghani , R. Pourhasan , 2011
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.
We construct black hole geometries in AdS$_3$ with non-trivial values of KdV charges. The black holes are holographically dual to quantum KdV Generalized Gibbs Ensemble in 2d CFT. They satisfy thermodynamic identity and thus are saddle point configurations of the Euclidean gravity path integral. We discuss holographic calculation of the KdV generalized partition function and show that for a certain value of chemical potentials new geometries, not the conventional BTZ ones, are the leading saddles.
Kerner and Manns recent work shows that, for an uncharged and non-rotating black hole, its Hawking temperature can be exactly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein-Maxwell-Dilaton-Axion (EMDA) black hole and the rotating Kaluza-Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا