Do you want to publish a course? Click here

Improving Cross-Domain Performance for Relation Extraction via Dependency Prediction and Information Flow Control

107   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Relation Extraction (RE) is one of the fundamental tasks in Information Extraction and Natural Language Processing. Dependency trees have been shown to be a very useful source of information for this task. The current deep learning models for relation extraction has mainly exploited this dependency information by guiding their computation along the structures of the dependency trees. One potential problem with this approach is it might prevent the models from capturing important context information beyond syntactic structures and cause the poor cross-domain generalization. This paper introduces a novel method to use dependency trees in RE for deep learning models that jointly predicts dependency and semantics relations. We also propose a new mechanism to control the information flow in the model based on the input entity mentions. Our extensive experiments on benchmark datasets show that the proposed model outperforms the existing methods for RE significantly.



rate research

Read More

Relation extraction (RE) aims to predict a relation between a subject and an object in a sentence, while knowledge graph link prediction (KGLP) aims to predict a set of objects, O, given a subject and a relation from a knowledge graph. These two problems are closely related as their respective objectives are intertwined: given a sentence containing a subject and an object o, a RE model predicts a relation that can then be used by a KGLP model together with the subject, to predict a set of objects O. Thus, we expect object o to be in set O. In this paper, we leverage this insight by proposing a multi-task learning approach that improves the performance of RE models by jointly training on RE and KGLP tasks. We illustrate the generality of our approach by applying it on several existing RE models and empirically demonstrate how it helps them achieve consistent performance gains.
Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C$^2$SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.
Aspect term extraction is one of the important subtasks in aspect-based sentiment analysis. Previous studies have shown that using dependency tree structure representation is promising for this task. However, most dependency tree structures involve only one directional propagation on the dependency tree. In this paper, we first propose a novel bidirectional dependency tree network to extract dependency structure features from the given sentences. The key idea is to explicitly incorporate both representations gained separately from the bottom-up and top-down propagation on the given dependency syntactic tree. An end-to-end framework is then developed to integrate the embedded representations and BiLSTM plus CRF to learn both tree-structured and sequential features to solve the aspect term extraction problem. Experimental results demonstrate that the proposed model outperforms state-of-the-art baseline models on four benchmark SemEval datasets.
76 - Jianing Wang 2020
Distant supervision (DS) aims to generate large-scale heuristic labeling corpus, which is widely used for neural relation extraction currently. However, it heavily suffers from noisy labeling and long-tail distributions problem. Many advanced approaches usually separately address two problems, which ignore their mutual interactions. In this paper, we propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction. We leverage reinforcement learning to instruct the model to select high-quality instances. We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes. During the iterative process, the two modules keep interacting to alleviate the noisy and long-tail problem simultaneously. Extensive experiments on widely used NYT data set clearly show that our method significant improvements over state-of-the-art baselines.
This paper explores how the Distantly Supervised Relation Extraction (DS-RE) can benefit from the use of a Universal Graph (UG), the combination of a Knowledge Graph (KG) and a large-scale text collection. A straightforward extension of a current state-of-the-art neural model for DS-RE with a UG may lead to degradation in performance. We first report that this degradation is associated with the difficulty in learning a UG and then propose two training strategies: (1) Path Type Adaptive Pretraining, which sequentially trains the model with different types of UG paths so as to prevent the reliance on a single type of UG path; and (2) Complexity Ranking Guided Attention mechanism, which restricts the attention span according to the complexity of a UG path so as to force the model to extract features not only from simple UG paths but also from complex ones. Experimental results on both biomedical and NYT10 datasets prove the robustness of our methods and achieve a new state-of-the-art result on the NYT10 dataset. The code and datasets used in this paper are available at https://github.com/baodaiqin/UGDSRE.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا