Analyticity of the spectrum and Dirichlet-to-Neumann operator technique for quantum graphs


Abstract in English

In some previous works, the analytic structure of the spectrum of a quantum graph operator as a function of the vertex conditions and other parameters of the graph was established. However, a specific local coordinate chart on the Grassmanian of all possible vertex conditions was used, thus creating an erroneous impression that something ``wrong can happen at the boundaries of the chart. Here we show that the analyticity of the corresponding ``dispersion relation holds over the whole Grassmannian, as well as over other parameter spaces. We also address the Dirichlet-to-Neumann (DtN) technique of relating quantum and discrete graph operators, which allows one to transfer some results from the discrete to the quantum graph case, but which has issues at the Dirichlet spectrum. We conclude that this difficulty, as in the first part of the paper, stems from the use of specific coordinates in a Grassmannian and show how to avoid it to extend some of the consequent results to the general situation.

Download