No Arabic abstract
Near-field radiative heat transfer between bodies at the nanoscale can surpass blackbody limits on thermal radiation by orders of magnitude due to contributions from evanescent electromagnetic fields, which carry no energy to the far-field. Thus far, principles guiding explorations of larger heat transfer beyond planar structures have assumed utility in surface nanostructuring, which can enhance the density of states, and further assumed that such design paradigms can approach Landauer limits, in analogy to conduction. We derive fundamental shape-independent limits to radiative heat transfer, applicable in near- through far-field regimes, that incorporate material and geometric constraints such as intrinsic dissipation and finite object sizes, and show that these preclude reaching the Landauer limits in all but a few restrictive scenarios. Additionally, we show that the interplay of material response and electromagnetic scattering among proximate bodies means that bodies which maximize radiative heat transfer actually maximize scattering rather than absorption. Finally, we compare our new bounds to existing Landauer limits, as well as limits involving bodies maximizing far-field absorption, and show that these lead to overly optimistic predictions. Our results have ramifications for the ultimate performance of thermophotovoltaics and nanoscale cooling, as well as related incandescent and luminescent devices.
We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced bodies, generalizing the concept of a black body to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility $chi$ can emit and absorb radiation at enhanced rates bounded by $|chi|^2 / textrm{Im} chi$, optimally mediated by near-field photon transfer proportional to $1/d^2$ across a separation distance $d$. Dipole--dipole and dipole--plate structures approach restrict
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwells equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the nonlocal modeling deviates from the classical $1/d^2$ law in the nanometerrangeat distances still larger than the ones where quantum effects are expected to come into play.
Light absorption in conducting materials produces heating of their conduction electrons, followed by relaxation into phonons within picoseconds, and subsequent diffusion into the surrounding media over longer timescales. This conventional picture of optical heating is supplemented by radiative cooling, which typically takes place at an even lower pace, only becoming relevant for structures held in vacuum or under extreme conditions of thermal isolation. Here we reveal an ultrafast radiative cooling regime between neighboring plasmon-supporting graphene nanostructures in which noncontact heat transfer becomes a dominant channel. We predict that >50% of the electronic heat energy deposited on a graphene disk can be transferred to a neighboring nanoisland within a femtosecond timescale. This phenomenon is facilitated by the combination of low electronic heat capacity and large plasmonic field concentration displayed by doped graphene. Similar effects should take place in other van der Waals materials, thus opening an unexplored avenue toward efficient heat management in ultrathin nanostructures.
We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.
We present a general and convenient first principle method to study near-field radiative heat transfer. We show that the Landauer-like expression of heat flux can be expressed in terms of a frequency and wave-vector dependent macroscopic dielectric function which can be obtained from the linear response density functional theory. A random phase approximation is used to calculate the response function. We computed the heat transfer in three systems -- graphene, molybdenum disulfide (MoS$_2$), and hexagonal boron nitride (h-BN). Our results show that the near-field heat flux exceeds the blackbody limit up to four orders of magnitude. With the increase of the distances between two parallel sheets, a $1/d^2$ dependence of heat flux is shown, consistent with Coulombs law. The heat transfer capacity is sensitive to the dielectric properties of materials. Influences from chemical potential and temperature are also discussed. Our method can be applied to a wide range of materials including systems with inhomogeneities.