Do you want to publish a course? Click here

A statistical study of long-term evolution of coronal hole properties as observed by SDO

43   0   0.0 ( 0 )
 Added by Stephan Heinemann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of the evolution of coronal holes (CHs) is especially important in the context of high-speed solar wind streams (HSS) emanating from them. Stream interaction regions may deliver large amount of energy into the Earths system, cause geomagnetic storms, and shape interplanetary space. By statistically analysing 16 long-living CHs observed by the SDO, we focus on coronal, morphological and underlying photospheric magnetic field characteristics as well as investigate the evolution of the associated HSSs. We use CATCH to extract and analyse CHs using observations taken by AIA and HMI. We derive changes in the CH properties and correlate them to the CH evolution. Further we analyse the properties of the HSS signatures near 1au from OMNI data by manually extracting the peak bulk velocity of the solar wind plasma. We find that the area evolution of CHs mostly shows a rough trend of growing to a maximum followed by a decay. No correlation of the area evolution to the evolution of the signed magnetic flux and signed magnetic flux density enclosed in the projected CH area was found. From this we conclude that the magnetic flux within the extracted CH boundaries is not the main cause for its area evolution. We derive CH area change rates (growth and decay) of 14.2 +/- 15.0 * 10^8 km^2/day showing a reasonable anti-correlation (cc =-0.48) to the solar activity, approximated by the sunspot number. The change rates of the signed mean magnetic flux density (27.3 +/- 32.2 mG/day) and the signed magnetic flux (30.3 +/- 31.5 * 10^18 Mx/day) were also found to be dependent on solar activity (cc =0.50 and cc =0.69 respectively) rather than on the individual CH evolutions. Further we find that the CH area-to-HSS peak velocity relation is valid for each CH over its evolution but revealing significant variations in the slopes of the regression lines.

rate research

Read More

In this paper, we carry out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of the jet2 is 402 km s. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of solar gravitational acceleration at the solar surface, while the latter is lower than solar gravitational acceleration. There are two possible candidates of extra forces acting on jet2 during its propagation. One is the downward gas pressure from jet1 when it falls back and meets with jet2. The other is the viscous drag from the surrounding plasma during the fast propagation of jet2. As a contrast, the accelerations of jet3 in the rising and falling phases are constant, implying that the propagation of jet3 is not significantly influenced byextra forces.
Using the multi-wavelength data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) spacecraft, we study a jet occurred in coronal hole near the northern pole of the Sun. The jet presented distinct helical upward motion during ejection. By tracking six identified moving features (MFs) in the jet, we found that the plasma moved at an approximately constant speed along the jets axis, meanwhile, they made a circular motion in the plane transverse to the axis. Inferred from linear and trigonometric fittings to the axial and transverse heights of the six tracks, the mean values of axial velocities, transverse velocities, angular speeds, rotation periods, and rotation radiuses of the jet are 114 km s$^{-1}$, 136 km s$^{-1}$, 0.81degr s$^{-1}$, 452 s, and 9.8 $times$ 10$^{3}$ km respectively. As the MFs rose, the jet width at the corresponding height increased. For the first time, we derived the height variation of the longitudinal magnetic field strength in the jet from the assumption of magnetic flux conservation. Our results indicate that, at the heights of 1 $times$ 10$^{4}$ $sim$ 7 $times$ 10$^{4}$ km from jet base, the flux density in the jet decreased from about 15 to 3 G as a function of B=0.5(R/R$_{sun}$-1)$^{-0.84}$ (G). A comparison was made with the other results in previous studies.
Coronal Holes (CHs) have subdued intensity and net blueshifts when compared to Quiet Sun (QS) at coronal temperatures. At transition region temperatures, such differences are obtained for regions with identical photospheric absolute magnetic flux density ($vert$B$vert$). In this work, we use spectroscopic measurements of the car 1334~{AA} line from Interface Region Imaging Spectrograph (IRIS), formed at chromospheric temperatures, to investigate the intensity, Doppler shift, line width, skew, and excess kurtosis variations with $vert$B$vert$. We find the intensity, Doppler shift, and line widths to increase with $vert$B$vert$ for CHs and QS. The CHs show deficit in intensity and excess total widths over QS for regions with identical $vert$B$vert$. For pixels with only upflows, CHs show excess upflows over QS, while for pixels with only downflows, CHs show excess downflows over QS that cease to exist at $vert$B$vert$ $le$ 40. Finally, the spectral profiles are found to be more skewed and flatter than a Gaussian, with no difference between CH and QS. These results are important in understanding the heating of the atmosphere in CH and QS, including solar wind formation, and provide further constraints on the modeling of the solar atmosphere.
Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occurred on 2010 June 13. Our main findings are (1) the shock wave appeared clearly only in the channels centered at 193 AA and 211 AA as a dome-like enhancement propagating ahead of its associated semi-spherical CME bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shockis around 2.8 MK; (3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared;(4) the top of the dome-like shock wave set out from about 1.23 Rodot and the thickness of the shocked layer is ~ 2times10^4 km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km/s to 550 km/s; (6) the lateral expansion of the shock wave suggests a constant speed around 400 km/s, which varies at different heights and directions. Our findings support the view that the coronal shock wave is driven by the CME bubble, and the on-limb EUV wave is consistent with a fast wave or at least includes the fast wave component.
We present a model for the intensity of optically thin EUV emission for a plasma atmosphere. We apply our model to the solar corona as observed using the six optically thin EUV channels of the SDO/AIA instrument. The emissivity of the plasma is calculated from the density and temperature using CHIANTI tables and the intensity is then determined by integration along the line of sight. We consider several different profiles for the radial density and temperature profiles, each of which are constrained by the observational data alone with no further physical assumptions. We demonstrate the method first by applying it to a quiet region of the corona, and then use it as the background component of a model including coronal holes, allowing the plasma densities and temperatures inside and outside the hole to be estimated. We compare our results with differential emission measure (DEM)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا