No Arabic abstract
Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.
We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring trick, that discovers the subspace spanned by the classifiers parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency.
The standard approach to supervised classification involves the minimization of a log-loss as an upper bound to the classification error. While this is a tight bound early on in the optimization, it overemphasizes the influence of incorrectly classified examples far from the decision boundary. Updating the upper bound during the optimization leads to improved classification rates while transforming the learning into a sequence of minimization problems. In addition, in the context where the classifier is part of a larger system, this modification makes it possible to link the performance of the classifier to that of the whole system, allowing the seamless introduction of external constraints.
Embedding methods for product spaces are powerful techniques for low-distortion and low-dimensional representation of complex data structures. Nevertheless, little is known regarding downstream learning and optimization problems in such spaces. Here, we address the problem of linear classification in a product space form -- a mix of Euclidean, spherical, and hyperbolic spaces. First, we describe new formulations for linear classifiers on a Riemannian manifold using geodesics and Riemannian metrics which generalize straight lines and inner products in vector spaces, respectively. Second, we prove that linear classifiers in $d$-dimensional space forms of any curvature have the same expressive power, i.e., they can shatter exactly $d+1$ points. Third, we formalize linear classifiers in product space forms, describe the first corresponding perceptron and SVM classification algorithms, and establish rigorous convergence results for the former. We support our theoretical findings with simulation results on several datasets, including synthetic data, CIFAR-100, MNIST, Omniglot, and single-cell RNA sequencing data. The results show that learning methods applied to small-dimensional embeddings in product space forms outperform their algorithmic counterparts in each space form.
Learning a model of perceptual similarity from a collection of objects is a fundamental task in machine learning underlying numerous applications. A common way to learn such a model is from relative comparisons in the form of triplets: responses to queries of the form Is object a more similar to b than it is to c?. If no consideration is made in the determination of which queries to ask, existing similarity learning methods can require a prohibitively large number of responses. In this work, we consider the problem of actively learning from triplets -finding which queries are most useful for learning. Different from previous active triplet learning approaches, we incorporate auxiliary information into our similarity model and introduce an active learning scheme to find queries that are informative for quickly learning both the relevant aspects of auxiliary data and the directly-learned similarity components. Compared to prior approaches, we show that we can learn just as effectively with much fewer queries. For evaluation, we introduce a new dataset of exhaustive triplet comparisons obtained from humans and demonstrate improved performance for different types of auxiliary information.
Regularization improves generalization of supervised models to out-of-sample data. Prior works have shown that prediction in the causal direction (effect from cause) results in lower testing error than the anti-causal direction. However, existing regularization methods are agnostic of causality. We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables. CASTLE learns the causal directed acyclical graph (DAG) as an adjacency matrix embedded in the neural networks input layers, thereby facilitating the discovery of optimal predictors. Furthermore, CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features. We provide a theoretical generalization bound for our approach and conduct experiments on a plethora of synthetic and real publicly available datasets demonstrating that CASTLE consistently leads to better out-of-sample predictions as compared to other popular benchmark regularizers.