No Arabic abstract
Many professional physicists do not fully understand the implications of the Einstein equivalence principle of general relativity. Consequently, many are unaware of the fact that special relativity is fully capable of handling accelerated reference frames. We present results from our nationwide survey that confirm this is the case. We discuss possible origins of this misconception, then suggest new materials for educators to use while discussing the classic twin paradox example. Afterwards, we review typical introductions to general relativity, clarify the equivalence principle, then suggest additional material to be used when the Einstein equivalence principle is covered in an introductory course. All of our suggestions are straightforward enough to be administered to a sophomore-level modern physics class.
We review the status of testing the principle of equivalence and Lorentz invariance from atmospheric and solar neutrino experiments.
This white paper aims to identify an open problem in Quantum Physics and the Nature of Reality --namely whether quantum theory and special relativity are formally compatible--, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.
A classic problem in general relativity, long studied by both physicists and philosophers of physics, concerns whether the geodesic principle may be derived from other principles of the theory, or must be posited independently. In a recent paper [Geroch & Weatherall, The Motion of Small Bodies in Space-Time, Comm. Math. Phys. (forthcoming)], Bob Geroch and I have introduced a new approach to this problem, based on a notion we call tracking. In the present paper, I situate the main results of that paper with respect to two other, related approaches, and then make some preliminary remarks on the interpretational significance of the new approach. My main suggestion is that tracking provides the resources for eliminating point particles---a problematic notion in general relativity---from the geodesic principle altogether.
In this note the AKSZ construction is applied to the BFV description of the reduced phase space of the Einstein-Hilbert and of the Palatini--Cartan theories in every space-time dimension greater than two. In the former case one obtains a BV theory for the first-order formulation of Einstein--Hilbert theory, in the latter a BV theory for Palatini--Cartan theory with a partial implementation of the torsion-free condition already on the space of fields. All theories described here are
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as the invariant light velocity in current theories, we get the corresponding special theory of relativity. Further, this Letter deduces triple special theories of relativity in cosmology, and cancels the invariant presumption of light velocity, it is proved that there exists a general constant velocity K determined by the experiments in cosmology, for K > 0, = 0 and < 0, they correspond to three kinds of possible relativistic theories in which the special theory of relativity is naturally contained for the special case of K > 0, and this Letter gives a prediction that, for K < 0, there is another likely case satisfying the principle of special relativity for some special physical systems in cosmology, in which the relativistic effects observed would be that the moving body would be lengthened, moving clock would be quickened. And the point of K = 0 is a bifurcation point, through which it gives out three types of possible universes in the cosmology (or multiverse). When a kind of matter with the maximally invariant velocity that may be superluminal or equal to light velocity is determined by experiments, then the invariant velocity can be taken as one of the general invariant velocity achieved in this Letter, then all results of current physical theories are consistent by utilizing this Letters theory.