We first consider interval partitions whose complements are Lebesgue-null and introduce a complete metric that induces the same topology as the Hausdorff distance (between complements). This is done using correspondences between intervals. Further restricting to interval partitions with alpha-diversity, we then adjust the metric to incorporate diversities. We show that this second metric space is Lusin. An important feature of this topology is that path-continuity in this topology implies the continuous evolution of diversities. This is important in related work on tree-valued stochastic processes where diversities are branch lengths.