Do you want to publish a course? Click here

Lineability and modes of convergence

283   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we look for the existence of large linear and algebraic structures of sequences of measurable functions with different modes of convergence. Concretely, the algebraic size of the family of sequences that are convergent in measure but not a.e.~pointwise, uniformly but not pointwise convergent, and uniformly convergent but not in $L^1$-norm, are analyzed. These findings extend and complement a number of earlier results by several authors.



rate research

Read More

It is proved the existence of large algebraic structures break --including large vector subspaces or infinitely generated free algebras-- inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the family of nonconstant differentiable real functions vanishing on dense sets, and the family of non-continuous separately continuous real functions. Lineability in special spaces of sequences is also investigated. Some of our findings complete or extend a number of results by several authors.
We introduce the concept of {em maximal lineability cardinal number}, $mL(M)$, of a subset $M$ of a topological vector space and study its relation to the cardinal numbers known as: additivity $A(M)$, homogeneous lineability $HL(M)$, and lineability $LL(M)$ of $M$. In particular, we will describe, in terms of $LL$, the lineability and spaceability of the families of the following Darboux-like functions on $real^n$, $nge 1$: extendable, Jones, and almost continuous functions.
172 - Zhijie Fan , Michael Lacey , Ji Li 2021
We establish the necessary and sufficient conditions for those symbols $b$ on the Heisenberg group $mathbb H^{n}$ for which the commutator with the Riesz transform is of Schatten class. Our main result generalises classical results of Peller, Janson--Wolff and Rochberg--Semmes, which address the same question in the Euclidean setting. Moreover, the approach that we develop bypasses the use of Fourier analysis, and can be applied to characterise that the commutator is of the Schatten class in other settings beyond Euclidean.
167 - D. Stoeva , P. Balazs 2009
In the present paper the unconditional convergence and the invertibility of multipliers is investigated. Multipliers are operators created by (frame-like) analysis, multiplication by a fixed symbol, and resynthesis. Sufficient and/or necessary conditions for unconditional convergence and invertibility are determined depending on the properties of the analysis and synthesis sequences, as well as the symbol. Examples which show that the given assertions cover different classes of multipliers are given. If a multiplier is invertible, a formula for the inverse operator is determined. The case when one of the sequences is a Riesz basis is completely characterized.
We prove an uncertainty principle for certain eigenfunction expansions on $ L^2(mathbb{R}^+,w(r)dr) $ and use it to prove analogues of theorems of Chernoff and Ingham for Laplace-Beltrami operators on compact symmetric spaces, special Hermite operator on $ mathbb{C}^n $ and Hermite operator on $ mathbb{R}^n.$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا