No Arabic abstract
Incommensurate (IC) charge-order (CO) and spin density wave (SDW) order in electron doped SrMn1-xWxO3-{delta} (x= 0.08 to 0.1875) have been studied using neutron diffraction.The study highlights the drastic effect of electron doping on the emergence of magnetic ground states which were not revealed in manganites before. With increasing (x) the crystal structure changes from simple tetragonal (P4/mmm) to an IC-CO modulated structure with super space-group P2/m({alpha}b{eta}0)00 having ab-planer ferro order of 3dx2-y2 orbitals in a compressed tetragonal (c<a) lattice. The IC-CO order is found to be intimately related with the 3dx2-y2 orbital order.The occurrence of IC-CO has been attributed to the mixed character (itinerant/localized) of eg-electrons undergoing Fermi-surface nesting of 3dx2-y2 band causing electronic instability, which opens a gap through a charge density wave (CDW) mechanism. This feature appears to share proximity with the high-Tc cuprates. At lower temperatures, the CDW phase undergoes SDW transition, which changes continuously with x and finally disappear at higher x due to the introduction of large frustration into the system. For 0.08 < x < 0.10 a C-type antiferromagnetic (AFM) order with propagation vector k = (1/2, 1/2, 0) appears under ferro-ordering of 3dz2 orbitals, whereas for x > 0.1, a different C-type AFM order with propagation vector k = (1/2,0,1/2), coexists with an incommensurate SDW order with k = (0.12, 0.38, 1/2).For compositions with 0.1625 < x < 0.175, while the structural features of CDW and orbital-order remain qualitatively the same, the magnetic interaction gets modified and results another SDW phase with single incommensurate propagation vector k = (0.07, 0.43, 1/2). A detail magnetic and structural phase-diagram, as a function of W substitution for SrMn1-xWxO3 (0.08 < x < 0.4) is presented.
Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
Via spin-polarized scanning tunneling microscopy, we revealed a long-range ordered spin density wave (SDW) for the first time on a Cr (001) surface, corresponding to the well-known incommensurate SDW of bulk Cr. It displays a (~ 6.0 nm) long-period spin modulation in each (001) plane and an anti-phase behavior between adjacent planes, which are confirmed by changing the magnetization of the tip. Meanwhile, we simultaneously observed the coexisting charge density wave (CDW) with half the period of the SDW. Taking advantage of real-space measurement, we found the charge and spin modulations are in-phase, and their domain structures are highly correlated. Surprisingly, the phase of CDW in dI/dV map displays a {pi} shift around a density-of-states dip at about -22 meV, indicating an anomalous CDW gap opened below EF. These observations support that the CDW is a secondary order driven by SDW. Therefore, our work is not only the first real space characterization of incommensurate SDW, but also provide new insights on how SDW and CDW coexist.
Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa$_2$Cu$_3$O$_{6+x}$ (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the $(0 0.31 L)$ CDW peak measured at the Cu $L$ edge is dominated by an $s$ form factor rather than a $d$ form factor as was reported previously. In addition, by measuring both $(0.31 0 L)$ and $(0 0.31 L)$ peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the $a$ and $b$ axes, with the CDW along the $a$ axis exhibiting orbital order in addition to charge order.
57Fe Mossbauer spectroscopy measurements are presented in the underdoped Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~ 2 and 12K respectively). The spectral shapes in the so-called spin-density wave (SDW) phase are interpreted in terms of incommensurate modulation of the magnetic structure, and allow the shape of the modulation to be determined. In undoped BaFe2As2, the magnetic structure is commensurate, and we find that incommensurability is present at the lowest doping level (x=0.014). As Co doping increases, the low temperature modulation progressively loses its squaredness and tends to a sine-wave. The same trend occurs for a given doping level, as temperature increases. We find that a magnetic hyperfine component persists far above the SDW transition, its intensity being progressively tranferred to a paramagnetic component on heating.
The transition metal dichalcogenide $1T$-TiSe$_2$ is a quasi-two-dimensional layered material with a phase transition towards a commensurate charge density wave (CDW) at a critical temperature T$_{c}approx 200$K. The relationship between the origin of the CDW instability and the semimetallic or semiconducting character of the normal state, i.e., with the non-reconstructed Fermi surface topology, remains elusive. By combining angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations, we investigate $1T$-TiSe$_{2-x}$S$_x$ single crystals. Using STM, we first show that the long-range phase coherent CDW state is stable against S substitutions with concentrations at least up to $x=0.34$. The ARPES measurements then reveal a slow but continuous decrease of the overlap between the electron and hole ($e$-$h$) bands of the semimetallic normal-state well reproduced by DFT and related to slight reductions of both the CDW order parameter and $T_c$. Our DFT calculations further predict a semimetal-to-semiconductor transition of the normal state at a higher critical S concentration of $x_c$=0.9 $pm$0.1, that coincides with a melted CDW state in TiSeS as measured with STM. Finally, we rationalize the $x$-dependence of the $e$-$h$ band overlap in terms of isovalent substitution-induced competing chemical pressure and charge localization effects. Our study highlights the key role of the $e$-$h$ band overlap for the CDW instability.