No Arabic abstract
This paper describes a conditional neural network architecture for Mandarin Chinese polyphone disambiguation. The system is composed of a bidirectional recurrent neural network component acting as a sentence encoder to accumulate the context correlations, followed by a prediction network that maps the polyphonic character embeddings along with the conditions to corresponding pronunciations. We obtain the word-level condition from a pre-trained word-to-vector lookup table. One goal of polyphone disambiguation is to address the homograph problem existing in the front-end processing of Mandarin Chinese text-to-speech system. Our system achieves an accuracy of 94.69% on a publicly available polyphonic character dataset. To further validate our choices on the conditional feature, we investigate polyphone disambiguation systems with multi-level conditions respectively. The experimental results show that both the sentence-level and the word-level conditional embedding features are able to attain good performance for Mandarin Chinese polyphone disambiguation.
The majority of Chinese characters are monophonic, while a special group of characters, called polyphonic characters, have multiple pronunciations. As a prerequisite of performing speech-related generative tasks, the correct pronunciation must be identified among several candidates. This process is called Polyphone Disambiguation. Although the problem has been well explored with both knowledge-based and learning-based approaches, it remains challenging due to the lack of publicly available labeled datasets and the irregular nature of polyphone in Mandarin Chinese. In this paper, we propose a novel semi-supervised learning (SSL) framework for Mandarin Chinese polyphone disambiguation that can potentially leverage unlimited unlabeled text data. We explore the effect of various proxy labeling strategies including entropy-thresholding and lexicon-based labeling. Qualitative and quantitative experiments demonstrate that our method achieves state-of-the-art performance. In addition, we publish a novel dataset specifically for the polyphone disambiguation task to promote further researches.
This study adapts Semantic Network of Adposition and Case Supersenses (SNACS) annotation to Mandarin Chinese and demonstrates that the same supersense categories are appropriate for Chinese adposition semantics. We annotated 15 chapters of The Little Prince, with high interannotator agreement. The parallel corpus gives insight into differences in construal between the two languages adpositions, namely a number of construals that are frequent in Chinese but rare or unattested in the English corpus. The annotated corpus can further support automatic disambiguation of adpositions in Chinese, and the common inventory of supersenses between the two languages can potentially serve cross-linguistic tasks such as machine translation.
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amount of language-specific training data. In this paper, we propose a Transformer-based SLU system that works directly on phones. This acoustic-based SLU system consists of only two blocks and does not require the presence of ASR module. The first block is a universal phone recognition system, and the second block is a Transformer-based language model for phones. We verify the effectiveness of the system on an intent classification dataset in Mandarin Chinese.
Depression has been the leading cause of mental-health illness worldwide. Major depressive disorder (MDD), is a common mental health disorder that affects both psychologically as well as physically which could lead to loss of lives. Due to the lack of diagnostic tests and subjectivity involved in detecting depression, there is a growing interest in using behavioural cues to automate depression diagnosis and stage prediction. The absence of labelled behavioural datasets for such problems and the huge amount of variations possible in behaviour makes the problem more challenging. This paper presents a novel multi-level attention based network for multi-modal depression prediction that fuses features from audio, video and text modalities while learning the intra and inter modality relevance. The multi-level attention reinforces overall learning by selecting the most influential features within each modality for the decision making. We perform exhaustive experimentation to create different regression models for audio, video and text modalities. Several fusions models with different configurations are constructed to understand the impact of each feature and modality. We outperform the current baseline by 17.52% in terms of root mean squared error.
Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of these networks for the prediction of missing relations or signs. Existing embedding methods for sign prediction generally enforce different notions of status or balance theories in their optimization function. These theories, however, are often inaccurate or incomplete, which negatively impacts method performance. In this context, we introduce conditional signed network embedding (CSNE). Our probabilistic approach models structural information about the signs in the network separately from fine-grained detail. Structural information is represented in the form of a prior, while the embedding itself is used for capturing fine-grained information. These components are then integrated in a rigorous manner. CSNEs accuracy depends on the existence of sufficiently powerful structural priors for modelling signed networks, currently unavailable in the literature. Thus, as a second main contribution, which we find to be highly valuable in its own right, we also introduce a novel approach to construct priors based on the Maximum Entropy (MaxEnt) principle. These priors can model the emph{polarity} of nodes (degree to which their links are positive) as well as signed emph{triangle counts} (a measure of the degree structural balance holds to in a network). Experiments on a variety of real-world networks confirm that CSNE outperforms the state-of-the-art on the task of sign prediction. Moreover, the MaxEnt priors on their own, while less accurate than full CSNE, achieve accuracies competitive with the state-of-the-art at very limited computational cost, thus providing an excellent runtime-accuracy trade-off in resource-constrained situations.