Do you want to publish a course? Click here

Locality & Entanglement in Table-Top Testing of the Quantum Nature of Linearized Gravity

174   0   0.0 ( 0 )
 Added by Ryan Marshman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper points out the importance of the assumption of locality of physical interactions, and the concomitant necessity of propagation of an entity (in this case, off-shell quanta - virtual gravitons) between two non-relativistic test masses in unveiling the quantum nature of linearized gravity through a laboratory experiment. At the outset, we will argue that observing the quantum nature of a system is not limited to evidencing $Oleft(hbarright)$ corrections to a classical theory: it instead hinges upon verifying tasks that a classical system cannot accomplish. We explain the background concepts needed from quantum field theory and quantum information theory to fully appreciate the previously proposed table-top experiments: namely forces arising through the exchange of virtual (off-shell) quanta, as well as Local Operations and Classical Communication (LOCC) and entanglement witnesses. We clarify the key assumption inherent in our evidencing experiment, namely the locality of physical interactions, which is a generic feature of interacting systems of quantum fields around us, and naturally incorporates micro-causality in the description of our experiment. We also present the types of states the matter field must inhabit, putting the experiment on firm relativistic quantum field theoretic grounds. At the end we use a non-local theory of gravity to illustrate how our mechanism may still be used to detect the qualitatively quantum nature of a force when the scale of non-locality is finite. We find that the scale of non-locality, including the entanglement entropy production in local/ non-local gravity, may be revealed from the results of our experiment.



rate research

Read More

66 - S. Aghababaei , H. Moradpour , 2021
Bells inequality is a strong criterion to distinguish classic and quantum mechanical aspects of reality. Its violation is the net effect of the non-locality stored in the Heisenberg uncertainty principle (HUP) generalized by quantum gravity scenarios, called generalized uncertainty principle (GUP). Here, the effects of GUP on Bell-like operators of two, and three outcomes, as well as continuous cases, are studied. The achievements claim that the violation quality of Bells and Bell-like inequalities may be a proper tool to get better understanding of the quantum features of gravity and its effects on reality. Indeed, it is obtained that the current accuracy of Stern-Gerlach experiments implies $beta_0ll10^{23}$.
With the use of twin, co-located, 3D interferometers, Cardiff Universitys Gravity Exploration Institute aims to observe quantum fluctuations of space-time as predicted by some theories of quantum gravity. Our design displacement sensitivity exceeds that of previous similar experiments, which have constrained the magnitudes of the fluctuations in the 1-25 MHz band. The increased sensitivity comes in large part from the comparably higher circulating power we aim to achieve, which reduces the overall shot noise. One complication of higher circulating power is an increase in contrast defect light, which includes higher-order modes. We will use the DC-readout scheme, whose dark-fringe offset must sufficiently dominate the contrast defect in order to detect faint signals. However, too much total output power risks saturating the high-bandwidth photodetectors. Suppressing the higher-order mode content of the contrast defect is a key strategy to realising the high circulating power and eliminating non-signal-carrying power that contributes to shot noise. For this, the inclusion of an output mode cleaner, whose design is described, is required.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple correlation measurements between two spins: one embedded in each test mass. Fundamentally, the above entanglement is shown to certify the presence of non-zero off-diagonal terms in the coherent state basis of the gravitational field modes.
106 - Onur Hosten 2021
We show that the atom interferometric coherence revival test suggested in [arXiv:2101.11629 [quant-ph] (2021)] does not test the quantum nature of the gravitational field when the atoms are coupled to a mechanical oscillator prepared in a thermal state. Specifically we clarify that the same coherence revivals take place in a model where the atoms are coupled to a classical oscillator through a classical gravitational field. We further elucidate the quantum mechanical calculation, showing that entanglement is not the source of the revivals. The suggested test is thus only relevant for pure initial quantum states of the oscillator. In this regime, numerical estimates show that it is unfeasible to do a test of the proposed type.
We introduce a protocol for a quantum switch in the gravitational field of a spherical mass and determine the time interval required for its realization in the gravity of Earth. One of the agents that perform operations with indefinite order is a quantum system in a path superposition state. Entanglement between its proper time and position is explored as a resource for the implementation of the quantum switch. The realization of the proposed protocol would probe the physical regime described by quantum mechanics on curved spacetimes, which has not yet been explored experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا