Do you want to publish a course? Click here

Electron enrichment of zigzag edges of armchair-oriented graphene nano-ribbons increases their stability and induces pinning of Fermi level

63   0   0.0 ( 0 )
 Added by Jose A. Verges
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Zigzag edges of neutral armchair-oriented Graphene Nano-Ribbons show states strongly localized at those edges. They behave as free radicals that can capture electrons during processing, increasing ribbons stability. Thus, charging and its consequences should be investigated.Total energy calculations of finite ribbons using spin polarized Density Functional Theory (DFT) show that ribbons charging is feasible. Energies for Pariser-Parr-Pople (PPP) model Hamiltonian are compatible with DFT allowing the study of larger systems. Results for neutral ribbons indicate: i) the fundamental gap of spin polarized (non polarized) solutions is larger (smaller) than experimental data, ii) the ground state is spin polarized, a characteristic still not observed experimentally. Total energy of GNRs decreases with the number of captured electrons reaching a minimum for a number that mainly depends on zigzag edges size. The following changes with respect to neutral GNRs are noted: i) the ground state is not spin polarized, ii) fundamental gap is in-between that of spin polarized and non polarized solutions of neutral ribbons, iii) while in neutral ribbons valence and conduction band onsets vs. the fundamental gap, linearly and symmetrically approach mid-gap with slope 0.5, charging induces Fermi level pinning, i.e., the slopes of the valence and conduction bands being about 0.1 and 0.9, in agreement with experiment.



rate research

Read More

Low-energy Landau levels of AB-stacked zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (textbf{B}) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are dominated by the textbf{B}-field strength and the $k_z$-dependent interribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along $k_x$ and $k_z$ directions, respectively. Such features are directly reflected in density of states, which exhibits a lot of asymmetric prominent peaks because of 1D curving bands. The $k_z$-dependent interribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change of state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge carrier density. The $k_z$-dependent wave functions are further used to predict the selection rule of the optical transition.
In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate with zero energy and have a fractional charge one-half. Such a semiconducting armchair ribbon represents a one-dimensional topological insulator with nearly zero energy end states. Using data collapse of numerical results we find that the shape of the kink displays an anomalous power-law dependence on the width of the local lattice deformation. We suggest that these gap states may be probed in optical measurements. However, metallic armchair graphene ribbons with a gap induced by many-electron interactions have no gap states and are not topological insulators.
It is demonstrated that the electric dipole layer due to the overlapping of electron wavefunctions at metal/graphene contact results in negative Fermi-level pinning effect on the region of GaAs surface with low interface-trap density in metal/graphene/n-GaAs(001) junction. The graphene interlayer takes a role of diffusion barrier preventing the atomic intermixing at interface and preserving the low interface-trap density region. The negative Fermi-level pinning effect is supported by the Schottky barrier decreasing as metal work-function increasing. Our work shows that the graphene interlayer can invert the effective work-function of metal between $high$ and $low$, making it possible to form both Schottky and Ohmic-like contacts with identical (particularly $high$ work-function) metal electrodes on a semiconductor substrate possessing low surface-state density.
Carbon-based magnetic structures promise significantly longer coherence times than traditional magnetic materials, which is of fundamental importance for spintronic applications. An elegant way of achieving carbon-based magnetic moments is the design of graphene nanostructures with an imbalanced occupation of the two sublattices forming the carbon honeycomb lattice. According to Liebs theorem, this induces local magnetic moments that are proportional to the sublattice imbalance. Exact positioning of sublattice imbalanced nanostructures in graphene nanomaterials hence offers a route to control interactions between induced local magnetic moments and to obtain graphene nanomaterials with magnetically non-trivial ground states. Here, we show that such sublattice imbalanced nanostructures can be incorporated along a large band gap armchair graphene nanoribbon on the basis of asymmetric zigzag edge extensions, which is achieved by incorporating specifically designed precursor monomers during the bottom-up fabrication of the graphene nanoribbons. Scanning tunneling spectroscopy of an isolated and electronically decoupled zigzag edge extension reveals Hubbard-split states in accordance with theoretical predictions. Investigation of pairs of such zigzag edge extensions reveals ferromagnetic, antiferromagnetic or quenching of the magnetic interactions depending on the relative alignment of the asymmetric edge extensions. Moreover, a ferromagnetic spin chain is demonstrated for a periodic pattern of zigzag edge extensions along the nanoribbon axis. This work opens a route towards the design and fabrication of graphene nanoribbon-based spin chains with complex magnetic ground states.
137 - Chang-An Li 2019
As the three-dimensional analogs of graphene, Weyl semimetals display signatures of chiral anomaly which arises from charge pumping between the lowest chiral Landau levels of the Weyl nodes in the presence of parallel electric and magnetic fields. In this work, we study the pseudo chiral anomaly and its transport signatures in graphene ribbon with zigzag edges. Here pseudo refers to the case where the inverse of width of zigzag graphene ribbon plays the same role as magnetic field in three-dimensional Weyl semimetals. The valley chiral bands in zigzag graphene ribbons can be introduced by edge potentials, giving rise to the nonconservation of chiral current, i.e., pseudo chiral anomaly, in the presence of a longitudinal electric field. Further numerical results reveal that pseudo magnetoconductivity of zigzag graphene ribbons is positive and has a nearly quadratic dependence on the pseudofield, which is regarded as the transport signature of pseudo chiral anomaly.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا