Do you want to publish a course? Click here

Dynamical confirmation of a black hole in MAXI J1820+070

135   0   0.0 ( 0 )
 Added by M. A. P. Torres
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present time-resolved 10.4-m GTC and 4.2-m WHT intermediate resolution spectroscopy of the X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained during its decline to the quiescent state. Cross-correlation of the 21 individual spectra against late-type templates reveals a sinusoidal velocity modulation with a period of 0.68549 +/- 0.00001 d and semi-amplitude of 417.7 +/- 3.9 km/s. We derive a mass function f(M) = 5.18 +/- 0.15 Msun, dynamically confirming the black hole nature of the compact object. Our analysis of the stellar absorption features supports a K3-5 spectral classification for the donor star, which contributes 20% of the total flux at 5200-6800 Angs. The photometric 0.703 +/- 0.003 d periodicity observed during outburst is 2.6% longer than the orbital period supporting the presence of a superhump modulation in the outburst lightcurves. In line with this interpretation, we constrain the binary mass ratio to be q=0.12. In addition, we observe a sharp increase in the Halpha emission line equivalent width during inferior conjunction of the donor star that we interpret as a grazing eclipse of the accretion disc and allows us to constrain the binary inclination to > 69 deg. On the other hand, the absence of X-ray eclipses during outburst imply i < 77 deg. These inclination limits, together with our dynamical solution, lead to a black hole mass in the range 7-8 Msun. We also measure a systemic velocity = -21.6 +/- 2.3 km/s which, combined with the Gaia DR2 proper motion and parallax, implies a large peculiar velocity of 100 km/s.



rate research

Read More

We present intermediate resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4-m Gran Telescopio Canarias. The observations were performed with the source close to the quiescent state and before the onset of renewed activity in August 2019. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find $v_{rot} sin i = 84 pm 5$ km s$^{-1}$ ($1!-!sigma$), which implies a donor to black-hole mass ratio $q = {M_2}/{M_1} = 0.072 pm 0.012$ for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are $M_1 = (5.95 pm 0.22)sin ^{-3}i$ $M_odot$ and $M_2 = (0.43 pm 0.08) sin^{-3}i$ $M_odot$. The use of $q$, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to $66^{circ} < i < 81^{circ}$. These values lead to 95% confidence level limits on the masses of $5.73 <M_1(M_odot) < 8.34$ and $0.28 < M_2(M_odot) < 0.77$. Adopting instead the $63 pm 3^{circ}$ orientation angle of the radio jet as the binary inclination leads to $M_1 = 8.48^{+0.79}_{-0.72} M_odot$ and $M_2 = 0.61^{+0.13}_{-0.12} M_odot$ ($1!-!sigma$).
We study the jet in the hard state of the accreting black-hole binary MAXI J1820+070. From the available radio-to-optical spectral and variability data, we put strong constraints on the jet parameters. We find while it is not possible to uniquely determine the jet Lorentz factor from the spectral and variability properties alone, we can estimate the jet opening angle ($1.5pm 1$ deg), the distance at which the jet starts emitting synchrotron radiation ($sim$3$times10^{10}$cm), the magnetic field strength there ($sim$10$^4$G), and the maximum Lorentz factor of the synchrotron-emitting electrons ($sim$110--150) with relatively low uncertainty, as they depend weakly on the bulk Lorentz factor. We find the breaks in the variability power spectra from radio to sub-mm are consistent with variability damping over the time scale equal to the travel time along the jet at any Lorentz factor. This factor can still be constrained by the electron-positron pair production rate within the jet base, which we calculate based on the observed X-ray/soft gamma-ray spectrum, and the jet power, required to be less than the accretion power. The minimum ($sim$1.5) and maximum ($sim$4.5) Lorentz factors correspond to the dominance of pairs and ions, and the minimum and maximum jet power, respectively. We estimate the magnetic flux threading the black hole and find the jet can be powered by the Blandford-Znajek mechanism in a magnetically-arrested flow accretion flow. We point out the similarity of our derived formalism to that of core shifts, observed in extragalactic radio sources.
Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI,J1820+070, providing a model-independent distance to the source. Our parallax measurement of ($0.348pm0.033$) mas for MAXI J1820+070 translates to a distance of ($2.96pm0.33$) kpc. This distance implies that the source reached ($15pm3)%$ of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity and the mass of the black hole in MAXI J1820+070 to be ($63pm3)^{circ}$, ($0.89pm0.09)c$ and ($9.2pm1.3) M_{odot}$, respectively.
The observational appearance of black holes in X-ray binary systems depends on their masses, spins, accretion rate and the misalignment angle between the black hole spin and the orbital angular momentum. We used high-precision optical polarimetric observations to constrain the position angle of the orbital axis of the black hole X-ray binary MAXI J1820+070. Together with previously obtained orientation of the relativistic jet and the inclination of the orbit this allowed us to determine a lower limit of 40 degrees on the misalignment angle. Such a large misalignment challenges the models of quasi-periodic oscillations observed in black hole X-ray binaries, puts strong constraints on the black hole formation mechanisms, and has to be accounted for when measuring black hole masses and spins from the X-ray data.
Aims. The optical emission of black hole transients increases by several magnitudes during the X-ray outbursts. Whether the extra light arises from the X-ray heated outer disc, from the inner hot accretion flow, or from the jet is currently debated. Optical polarisation measurements are able to distinguish the relative contributions of these components. Methods. We present the results of BVR polarisation measurements of the black hole X-ray binary MAXI J1820+070 during the period of March-April 2018. Results. We detect small, $sim$0.7%, but statistically significant polarisation, part of which is of interstellar origin. Depending on the interstellar polarisation estimate, the intrinsic polarisation degree of the source is between $sim$0.3% and 0.7%, and the polarisation position angle is between $sim10deg-30deg$. We show that the polarisation increases after MJD 58222 (2018 April 14). The change is of the order of 0.1% and is most pronounced in the R band. The change of the source Stokes parameters occurs simultaneously with the drop of the observed V-band flux and a slow softening of the X-ray spectrum. The Stokes vectors of intrinsic polarisation before and after the drop are parallel, at least in the V and R filters. Conclusions. We suggest that the increased polarisation is due to the decreasing contribution of the non-polarized component, which we associate with the the hot flow or jet emission. The low polarisation can result from the tangled geometry of the magnetic field or from the Faraday rotation in the dense, ionised, and magnetised medium close to the black hole. The polarized optical emission is likely produced by the irradiated disc or by scattering of its radiation in the optically thin outflow.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا