Biased permutative equivariant categories


Abstract in English

For a finite group G, we introduce the complete suboperad $Q_G$ of the categorical G-Barratt-Eccles operad $P_G$. We prove that $P_G$ is not finitely generated, but $Q_G$ is finitely generated and is a genuine $E_infty$ G-operad (i.e., it is $N_infty$ and includes all norms). For G cyclic of order 2 or 3, we determine presentations of the object operad of $Q_G$ and conclude with a discussion of algebras over $Q_G$, which we call biased permutative equivariant categories.

Download