Do you want to publish a course? Click here

Compression of Acoustic Event Detection Models With Quantized Distillation

66   0   0.0 ( 0 )
 Added by Bowen Shi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Acoustic Event Detection (AED), aiming at detecting categories of events based on audio signals, has found application in many intelligent systems. Recently deep neural network significantly advances this field and reduces detection errors to a large scale. However how to efficiently execute deep models in AED has received much less attention. Meanwhile state-of-the-art AED models are based on large deep models, which are computational demanding and challenging to deploy on devices with constrained computational resources. In this paper, we present a simple yet effective compression approach which jointly leverages knowledge distillation and quantization to compress larger network (teacher model) into compact network (student model). Experimental results show proposed technique not only lowers error rate of original compact network by 15% through distillation but also further reduces its model size to a large extent (2% of teacher, 12% of full-precision student) through quantization.

rate research

Read More

In this paper, we present a compression approach based on the combination of low-rank matrix factorization and quantization training, to reduce complexity for neural network based acoustic event detection (AED) models. Our experimental results show this combined compression approach is very effective. For a three-layer long short-term memory (LSTM) based AED model, the original model size can be reduced to 1% with negligible loss of accuracy. Our approach enables the feasibility of deploying AED for resource-constraint applications.
This paper presents our work of training acoustic event detection (AED) models using unlabeled dataset. Recent acoustic event detectors are based on large-scale neural networks, which are typically trained with huge amounts of labeled data. Labels for acoustic events are expensive to obtain, and relevant acoustic event audios can be limited, especially for rare events. In this paper we leverage an Internet-scale unlabeled dataset with potential domain shift to improve the detection of acoustic events. Based on the classic tri-training approach, our proposed method shows accuracy improvement over both the supervised training baseline, and semisupervised self-training set-up, in all pre-defined acoustic event detection tasks. As our approach relies on ensemble models, we further show the improvements can be distilled to a single model via knowledge distillation, with the resulting single student model maintaining high accuracy of teacher ensemble models.
Weakly Labelled learning has garnered lot of attention in recent years due to its potential to scale Sound Event Detection (SED) and is formulated as Multiple Instance Learning (MIL) problem. This paper proposes a Multi-Task Learning (MTL) framework for learning from Weakly Labelled Audio data which encompasses the traditional MIL setup. To show the utility of proposed framework, we use the input TimeFrequency representation (T-F) reconstruction as the auxiliary task. We show that the chosen auxiliary task de-noises internal T-F representation and improves SED performance under noisy recordings. Our second contribution is introducing two step Attention Pooling mechanism. By having 2-steps in attention mechanism, the network retains better T-F level information without compromising SED performance. The visualisation of first step and second step attention weights helps in localising the audio-event in T-F domain. For evaluating the proposed framework, we remix the DCASE 2019 task 1 acoustic scene data with DCASE 2018 Task 2 sounds event data under 0, 10 and 20 db SNR resulting in a multi-class Weakly labelled SED problem. The proposed total framework outperforms existing benchmark models over all SNRs, specifically 22.3 %, 12.8 %, 5.9 % improvement over benchmark model on 0, 10 and 20 dB SNR respectively. We carry out ablation study to determine the contribution of each auxiliary task and 2-step Attention Pooling to the SED performance improvement. The code is publicly released
With the widespread use of telemedicine services, automatic assessment of health conditions via telephone speech can significantly impact public health. This work summarizes our preliminary findings on automatic detection of respiratory distress using well-known acoustic and prosodic features. Speech samples are collected from de-identified telemedicine phonecalls from a healthcare provider in Bangladesh. The recordings include conversational speech samples of patients talking to doctors showing mild or severe respiratory distress or asthma symptoms. We hypothesize that respiratory distress may alter speech features such as voice quality, speaking pattern, loudness, and speech-pause duration. To capture these variations, we utilize a set of well-known acoustic and prosodic features with a Support Vector Machine (SVM) classifier for detecting the presence of respiratory distress. Experimental evaluations are performed using a 3-fold cross-validation scheme, ensuring patient-independent data splits. We obtained an overall accuracy of 86.4% in detecting respiratory distress from the speech recordings using the acoustic feature set. Correlation analysis reveals that the top-performing features include loudness, voice rate, voice duration, and pause duration.
Acoustic Scene Classification (ASC) is a challenging task, as a single scene may involve multiple events that contain complex sound patterns. For example, a cooking scene may contain several sound sources including silverware clinking, chopping, frying, etc. What complicates ASC more is that classes of different activities could have overlapping sounds patterns (e.g. both cooking and dishwashing could have silverware clinking sound). In this paper, we propose a multi-head attention network to model the complex temporal input structures for ASC. The proposed network takes the audios time-frequency representation as input, and it leverages standard VGG plus LSTM layers to extract high-level feature representation. Further more, it applies multiple attention heads to summarize various patterns of sound events into fixed dimensional representation, for the purpose of final scene classification. The whole network is trained in an end-to-end fashion with back-propagation. Experimental results confirm that our model discovers meaningful sound patterns through the attention mechanism, without using explicit supervision in the alignment. We evaluated our proposed model using DCASE 2018 Task 5 dataset, and achieved competitive performance on par with previous winners results.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا