No Arabic abstract
We prove a general connection between the communication complexity of two-player games and the sample complexity of their multi-player locally private analogues. We use this connection to prove sample complexity lower bounds for locally differentially private protocols as straightforward corollaries of results from communication complexity. In particular, we 1) use a communication lower bound for the hidden layers problem to prove an exponential sample complexity separation between sequentially and fully interactive locally private protocols, and 2) use a communication lower bound for the pointer chasing problem to prove an exponential sample complexity separation between $k$ round and $k+1$ round sequentially interactive locally private protocols, for every $k$.
We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor $k geq 1$ by which the sum of a protocols single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive $k$-compositional protocol into an equivalent sequentially interactive protocol with an $O(k)$ blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any $k$, there is a fully interactive $k$-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an $tilde Omega(k)$ factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.
Motivated by the increasing concern about privacy in nowadays data-intensive online learning systems, we consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee. Specifically, the rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret. We first derive the regret lower bounds for any LDP mechanism and any learning algorithm. Then, we present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism. In this process, we also propose a new Bayesian optimization (BO) method (called MoMA-GP-UCB) based on median-of-means techniques and kernel approximations, which complements previous BO algorithms for heavy-tailed payoffs with a reduced complexity. Further, empirical comparisons of different algorithms on both synthetic and real-world datasets highlight the superior performance of MoMA-GP-UCB in both private and non-private scenarios.
As massive data are produced from small gadgets, federated learning on mobile devices has become an emerging trend. In the federated setting, Stochastic Gradient Descent (SGD) has been widely used in federated learning for various machine learning models. To prevent privacy leakages from gradients that are calculated on users sensitive data, local differential privacy (LDP) has been considered as a privacy guarantee in federated SGD recently. However, the existing solutions have a dimension dependency problem: the injected noise is substantially proportional to the dimension $d$. In this work, we propose a two-stage framework FedSel for federated SGD under LDP to relieve this problem. Our key idea is that not all dimensions are equally important so that we privately select Top-k dimensions according to their contributions in each iteration of federated SGD. Specifically, we propose three private dimension selection mechanisms and adapt the gradient accumulation technique to stabilize the learning process with noisy updates. We also theoretically analyze privacy, accuracy and time complexity of FedSel, which outperforms the state-of-the-art solutions. Experiments on real-world and synthetic datasets verify the effectiveness and efficiency of our framework.
Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in ML often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
Deep learning models are often trained on datasets that contain sensitive information such as individuals shopping transactions, personal contacts, and medical records. An increasingly important line of work therefore has sought to train neural networks subject to privacy constraints that are specified by differential privacy or its divergence-based relaxations. These privacy definitions, however, have weaknesses in handling certain important primitives (composition and subsampling), thereby giving loose or complicated privacy analyses of training neural networks. In this paper, we consider a recently proposed privacy definition termed textit{$f$-differential privacy} [18] for a refined privacy analysis of training neural networks. Leveraging the appealing properties of $f$-differential privacy in handling composition and subsampling, this paper derives analytically tractable expressions for the privacy guarantees of both stochastic gradient descent and Adam used in training deep neural networks, without the need of developing sophisticated techniques as [3] did. Our results demonstrate that the $f$-differential privacy framework allows for a new privacy analysis that improves on the prior analysis~[3], which in turn suggests tuning certain parameters of neural networks for a better prediction accuracy without violating the privacy budget. These theoretically derived improvements are confirmed by our experiments in a range of tasks in image classification, text classification, and recommender systems. Python code to calculate the privacy cost for these experiments is publicly available in the texttt{TensorFlow Privacy} library.