No Arabic abstract
Many sequential decision-making tasks require choosing at each decision step the right action out of the vast set of possibilities by extracting actionable intelligence from high-dimensional data streams. Most of the times, the high-dimensionality of actions and data makes learning of the optimal actions by traditional learning methods impracticable. In this work, we investigate how to discover and leverage sparsity in actions and data to enable fast learning. As our learning model, we consider a structured contextual multi-armed bandit (CMAB) with high-dimensional arm (action) and context (data) sets, where the rewards depend only on a few relevant dimensions of the joint context-arm set, possibly in a non-linear way. We depart from the prior work by assuming a high-dimensional, continuum set of arms, and allow relevant context dimensions to vary for each arm. We propose a new online learning algorithm called {em CMAB with Relevance Learning} (CMAB-RL) and prove that its time-averaged regret asymptotically goes to zero when the expected reward varies smoothly in contexts and arms. CMAB-RL enjoys a substantially improved regret bound compared to classical CMAB algorithms whose regrets depend on dimensions $d_x$ and $d_a$ of the context and arm sets. Importantly, we show that when the learner has prior knowledge on sparsity, given in terms of upper bounds $overline{d}_x$ and $overline{d}_a$ on the number of relevant dimensions, then CMAB-RL achieves $tilde{O}(T^{1-1/(2+2overline{d}_x +overline{d}_a)})$ regret. Finally, we illustrate how CMAB algorithms can be used for optimal personalized blood glucose control in type 1 diabetes mellitus patients, and show that CMAB-RL outperforms other contextual MAB algorithms in this task.
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seeing recommended content on each page can only return feedback as moving forward in the process or dropping from it until a termination state. We refer to this type of problems as sequential decision making in linear--flow. We propose to formulate the problem as an MDP with Bandits where Bandits are employed to model the transition probability matrix. At recommendation time, we use Thompson sampling (TS) to sample the transition probabilities and allocate the best series of actions with analytical solution through exact dynamic programming. The way that we formulate the problem allows us to leverage TSs efficiency in balancing exploration and exploitation and Bandits convenience in modeling actions incompatibility. In the simulation study, we observe the proposed MDP with Bandits algorithm outperforms Q-learning with $epsilon$-greedy and decreasing $epsilon$, independent Bandits, and interaction Bandits. We also find the proposed algorithms performance is the most robust to changes in the across-page interdependence strength.
We study the design of learning architectures for behavioural planning in a dense traffic setting. Such architectures should deal with a varying number of nearby vehicles, be invariant to the ordering chosen to describe them, while staying accurate and compact. We observe that the two most popular representations in the literature do not fit these criteria, and perform badly on an complex negotiation task. We propose an attention-based architecture that satisfies all these properties and explicitly accounts for the existing interactions between the traffic participants. We show that this architecture leads to significant performance gains, and is able to capture interactions patterns that can be visualised and qualitatively interpreted. Videos and code are available at https://eleurent.github.io/social-attention/.
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
We consider online learning for minimizing regret in unknown, episodic Markov decision processes (MDPs) with continuous states and actions. We develop variants of the UCRL and posterior sampling algorithms that employ nonparametric Gaussian process priors to generalize across the state and action spaces. When the transition and reward functions of the true MDP are members of the associated Reproducing Kernel Hilbert Spaces of functions induced by symmetric psd kernels (frequentist setting), we show that the algorithms enjoy sublinear regret bounds. The bounds are in terms of explicit structural parameters of the kernels, namely a novel generalization of the information gain metric from kernelized bandit, and highlight the influence of transition and reward function structure on the learning performance. Our results are applicable to multidimensional state and action spaces with composite kernel structures, and generalize results from the literature on kernelized bandits, and the adaptive control of parametric linear dynamical systems with quadratic costs.
We consider an online revenue maximization problem over a finite time horizon subject to lower and upper bounds on cost. At each period, an agent receives a context vector sampled i.i.d. from an unknown distribution and needs to make a decision adaptively. The revenue and cost functions depend on the context vector as well as some fixed but possibly unknown parameter vector to be learned. We propose a novel offline benchmark and a new algorithm that mixes an online dual mirror descent scheme with a generic parameter learning process. When the parameter vector is known, we demonstrate an $O(sqrt{T})$ regret result as well an $O(sqrt{T})$ bound on the possible constraint violations. When the parameter is not known and must be learned, we demonstrate that the regret and constraint violations are the sums of the previous $O(sqrt{T})$ terms plus terms that directly depend on the convergence of the learning process.