Do you want to publish a course? Click here

Precision Test of the Limits to Universality in Few-Body Physics

68   0   0.0 ( 0 )
 Added by Roman Chapurin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in $^{39}mathrm{K}$ at $33.5820(14)thinspace$G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables the construction of a complete two-body coupled-channel model for determination of the scattering lengths with an unprecedented low uncertainty. Utilizing an accurate scattering length map, we measure the precise location of the Efimov ground state to test van der Waals universality. Precise control of the samples temperature and density ensures that systematic effects on the Efimov trimer state are well understood. We measure the ground Efimov resonance location to be at $-14.05(17)$ times the van der Waals length $r_{mathrm{vdW}}$, significantly deviating from the value of $-9.7 thinspace r_{mathrm{vdW}}$ predicted by van der Waals universality. We find that a refined multichannel three-body model, built on our measurement of two-body physics, can account for this difference and even successfully predict the Efimov inelasticity parameter $eta$.

rate research

Read More

In this paper we discuss the recent discovery of the universality of the three-body parameter (3BP) from Efimov physics. This new result was identified by recent experimental observations in ultracold quantum gases where the value of the s-wave scattering length, $a=a_-$, at which the first Efimov resonance is created was found to be nearly the same for a range of atomic species --- if scaled as $a_-/r_{rm vdW}$, where $r_{rm vdW}$ is the van der Waals length. Here, we discuss some of the physical principles related to these observations that emerge from solving the three-body problem with van der Waals interactions in the hyperspherical formalism. We also demonstrate the strong three-body multichannel nature of the problem and the importance of properly accounting for nonadiabatic effects.
We report on the observation of triatomic Efimov resonances in an ultracold gas of cesium atoms. Exploiting the wide tunability of interactions resulting from three broad Feshbach resonances in the same spin channel, we measure magnetic-field dependent three-body recombination loss. The positions of the loss resonances yield corresponding values for the three-body parameter, which in universal few-body physics is required to describe three-body phenomena and in particular to fix the spectrum of Efimov states. Our observations show a robust universal behavior with a three-body parameter that stays essentially constant.
Universal behaviour has been found inside the window of Efimov physics for systems with $N=4,5,6$ particles. Efimov physics refers to the emergence of a number of three-body states in systems of identical bosons interacting {it via} a short-range interaction becoming infinite at the verge of binding two particles. These Efimov states display a discrete scale invariance symmetry, with the scaling factor independent of the microscopic interaction. Their energies in the limit of zero-range interaction can be parametrized, as a function of the scattering length, by a universal function. We have found, using a particular form of finite-range scaling, that the same universal function can be used to parametrize the energies of $Nle6$ systems inside the Efimov-physics window. Moreover, we show that the same finite-scale analysis reconciles experimental measurements of three-body binding energies with the universal theory.
A recent rejuvenation of experimental and theoretical interest in the physics of few- body systems has provided deep, fundamental insights into a broad range of problems. Few-body physics is a cross-cutting discipline not restricted to conventional subject ar- eas such as nuclear physics or atomic or molecular physics. To a large degree, the recent explosion of interest in this subject has been sparked by dramatic enhancements of experimental capabilities in ultracold atomic systems over the past decade, which now permit atoms and molecules to be explored deep in the quantum mechanical limit with controllable two-body interactions. This control, typically enabled by magnetic or electromagnetically-dressed Fano-Feshbach resonances, allows in particular access to the range of universal few-body physics, where two-body scattering lengths far exceed all other length scales in the problem. The Efimov effect, where 3 particles experienc- ing short-range interactions can counterintuitively exhibit an infinite number of bound or quasi-bound energy levels, is the most famous example of universality. Tremendous progress in the field of universal Efimov physics has taken off, driven particularly by a combination of experimental and theoretical studies in the past decade, and prior to the first observation in 2006, by an extensive set of theoretical studies dating back to 1970. Because experimental observations of Efimov physics have usually relied on resonances or interference phenomena in three-body recombination, this connects naturally with the processes of molecule formation in a low temperature gas of atoms or nucleons, and more generally with N-body recombination processes. Some other topics not closely related to the Efimov effect are also reviewed in this article, including ...
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا