Do you want to publish a course? Click here

Propagation of chaos for mean field rough differential equations

69   0   0.0 ( 0 )
 Added by Ismael Bailleul
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We address propagation of chaos for large systems of rough differential equations associated with random rough differential equations of mean field type $$ dX_t = V(X_t,mathcal{L}(X_t))dt + F(X_t,mathcal{L}(X_t))dW_t $$ where $W$ is a random rough path and $mathcal{L}(X_t)$ is the law of $X_t$. We prove propagation of chaos, and provide also an explicit optimal convergence rate. The analysis is based upon the tools we developed in our companion paper [1] for solving mean field rough differential equations and in particular upon a corresponding version of the It^o-Lyons continuity theorem. The rate of convergence is obtained by a coupling argument developed first by Sznitman for particle systems with Brownian inputs.

rate research

Read More

63 - Daniel Lacker 2021
This paper develops a non-asymptotic, local approach to quantitative propagation of chaos for a wide class of mean field diffusive dynamics. For a system of $n$ interacting particles, the relative entropy between the marginal law of $k$ particles and its limiting product measure is shown to be $O((k/n)^2)$ at each time, as long as the same is true at time zero. A simple Gaussian example shows that this rate is optimal. The main assumption is that the limiting measure obeys a certain functional inequality, which is shown to encompass many potentially irregular but not too singular finite-range interactions, as well as some infinite-range interactions. This unifies the previously disparate cases of Lipschitz versus bounded measurable interactions, improving the best prior bounds of $O(k/n)$ which were deduced from global estimates involving all $n$ particles. We also cover a class of models for which qualitative propagation of chaos and even well-posedness of the McKean-Vlasov equation were previously unknown. At the center of a new approach is a differential inequality, derived from a form of the BBGKY hierarchy, which bounds the $k$-particle entropy in terms of the $(k+1)$-particle entropy.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, corresponding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
In this paper we solve real-valued rough differential equations (RDEs) reflected on an irregular boundary. The solution $Y$ is constructed as the limit of a sequence $(Y^n)_{ninmathbb{N}}$ of solutions to RDEs with unbounded drifts $(psi_n)_{ninmathbb{N}}$. The penalisation $psi_n$ increases with $n$. Along the way, we thus also provide an existence theorem and a Doss-Sussmann representation for RDEs with a drift growing at most linearly. In addition, a speed of convergence of the sequence of penalised paths to the reflected solution is obtained. We finally use the penalisation method to prove that the law at time $t>0$ of some reflected Gaussian RDE is absolutely contiuous with respect to the Lebesgue measure.
In this paper, we study two variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian motions. One is the incomplete Taylor scheme which excludes some terms of an Taylor scheme in its recursive computation so as to reduce the computation time. The other one is to add some deterministic terms to an incomplete Taylor scheme to improve the mean rate of convergence. Almost sure rate of convergence and $L_p$-rate of convergence are obtained for the incomplete Taylor schemes. Almost sure rate is expressed in terms of the Holder exponents of the driving signals and the $L_p$-rate is expressed by the Hurst parameters. Both rates involves with the incomplete Taylor scheme in a very explicit way and then provide us with the best incomplete schemes, depending on that one needs the almost sure convergence or one needs $L_p$-convergence. As in the smooth case, general Taylor schemes are always complicated to deal with. The incomplete Taylor scheme is even more sophisticated to analyze. A new feature of our approach is the explicit expression of the error functions which will be easier to study. Estimates for multiple integrals and formulas for the iterated vector fields are obtained to analyze the error functions and then to obtain the rates of convergence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا