Do you want to publish a course? Click here

Can we constrain the dark energy equation of state parameters using configuration entropy?

75   0   0.0 ( 0 )
 Added by Biswajit Pandey
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new scheme for constraining the dark energy equation of state parameter/parameters based on the study of the evolution of the configuration entropy. We analyze a set of one parameter and two parameter dynamical dark energy models and find that the derivative of the configuration entropy in all the dynamical dark energy models exhibit a minimum. The magnitude of the minimum of the entropy rate is decided by both the parametrization of the equation of state as well as the associated parameters. The location of the minimum of the entropy rate is less sensitive to the form of the parametrization but depends on the associated parameters. We determine the best fit equations for the location and magnitude of the minimum of the entropy rate in terms of the parameter/parameters of the dark energy equation of state. These relations would allow us to constrain the dark energy equation of state parameter/parameters for any given parametrization provided the evolution of the configuration entropy in the Universe is known from observations.



rate research

Read More

We study the evolution of the configuration entropy of HI distribution in the post-reionization era assuming different time evolution of HI bias. We describe time evolution of linear bias of HI distribution using a simple form $b(a)=b_{0} a^{n}$ with different index $n$. The derivative of the configuration entropy rate is known to exhibit a peak at the scale factor corresponding to the $Lambda$-matter equality in the unbiased $Lambda$CDM model. We show that in the $Lambda$CDM model with time-dependent linear bias, the peak shifts to smaller scale factors for negative values of $n$. This is related to the fact that the growth of structures in the HI density field can significantly slow down even before the onset of $Lambda$ domination in presence of a strong time evolution of the HI bias. We find that the shift is linearly related to the index $n$. We obtain the best fit relation between these two parameters and propose that identifying the location of this peak from observations would allow us to constrain the time evolution of HI bias within the framework of the $Lambda$CDM model.
323 - Biswajit Pandey 2019
We propose an alternative physical mechanism to explain the observed accelerated expansion of the Universe based on the configuration entropy of the cosmic web and its evolution. We show that the sheets, filaments and clusters in the cosmic web act as sinks whereas the voids act as the sources of information. The differential entropy of the cosmic velocity field increases with time and also acts as a source of entropy. The growth of non-linear structures and the emergence of the cosmic web may lead to a situation where the overall dissipation rate of information at the sinks are about to dominate the generation rate of information from the sources. Consequently, the Universe either requires a dispersal of the overdense non-linear structures or an accelerated expansion of the underdense voids to prevent a violation of the second law of thermodynamics. The dispersal of the sheets, filaments and clusters are not a viable option due to the attractive nature of gravity but the repulsive and outward peculiar gravitational acceleration at the voids makes it easier to stretch them at an accelerated rate. We argue that this accelerated expansion of the voids inside the cosmic web may mimic the behaviour of dark energy.
Galaxies are often used as tracers of the large scale structure (LSS) to measure the Integrated Sachs-Wolfe effect (ISW) by cross-correlating the galaxy survey maps with the Cosmic Microwave Background (CMB) map. We use the Cosmic Infrared Background (CIB) as a tracer of the LSS to perform a theoretical CIB-CMB cross-correlation to measure the ISW for different Planck HFI frequencies. We discuss the detectability of this ISW signal using a Signal-to-noise ratio analysis and find that the ISW detected this way can provide us with the highest SNR for a single tracer ranging from 5 to 6.7 (maximum being for 857 GHz) with the CIB and CMB maps extracted over the whole sky. A Fisher matrix analysis showed that this measurement of the ISW can improve the constraints on the cosmological parameters; especially the equation of state of the dark energy $w$ by $sim 47%$. Performing a more realistic analysis including the galactic dust residuals in the CIB maps over realistic sky fractions shows that the dust power spectra dominate over the CIB power spectra at $ell < 100$ and ISW cant be detected with high SNR. We perform the cross-correlation on the existing CIB-CMB maps over $sim 11%$ of the sky in the southern hemisphere and find that the ISW is not detected with the existing CIB maps over such small sky fractions.
Are geometrical summaries of the CMB and LSS sufficient for estimating cosmological parameters? And how does our choice of a dark energy model impact the current constraints on standard cosmological parameters? We address these questions in the context of the widely used CPL parametrization of a time varying equation of state w in a cosmology allowing spatial curvature. We study examples of different behavior allowed in a CPL parametrization in a phase diagram, and relate these to effects on the observables. We examine parameter constraints in such a cosmology by combining WMAP5, SDSS, SNe, HST data sets by comparing the power spectra. We carefully quantify the differences of these constraints to those obtained by using geometrical summaries for the same data sets. We find that (a) using summary parameters instead of the full data sets give parameter constraints that are similar, but with discernible differences, (b) due to degeneracies, the constraints on the standard parameters broaden significantly for the same data sets. In particular, we find that in the context of CPL dark energy, (i) a Harrison-Zeldovich spectrum cannot be ruled out at $2sigma$ levels with our current data sets. and (ii) the SNe IA, HST, and WMAP 5 data are not sufficient to constrain spatial curvature; we additionally require the SDSS DR4 data to achieve this.
The use of standard rulers, such as the scale of the Baryonic Acoustic oscillations (BAO), has become one of the more powerful techniques employed in cosmology to probe the entity driving the accelerating expansion of the Universe. In this paper, the topology of large scale structure (LSS) is used as one such standard ruler to study this mysterious `dark energy. By following the redshift evolution of the clustering of luminous red galaxies (LRGs) as measured by their 3D topology (counting structures in the cosmic web), we can chart the expansion rate and extract information about the equation of state of dark energy. Using the technique first introduced in (Park & Kim, 2009), we evaluate the constraints that can be achieved using 3D topology measurements from next-generation LSS surveys such as the Baryonic Oscillation Spectroscopic Survey (BOSS). In conjunction with the information that will be available from the Planck satellite, we find a single topology measurement on 3 different scales is capable of constraining a single dark energy parameter to within 5% and 10% when dynamics are permitted. This offers an alternative use of the data available from redshift surveys and serves as a cross-check for BAO studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا