Do you want to publish a course? Click here

Radiative leptonic decays on the lattice

193   0   0.0 ( 0 )
 Added by Stefan Meinel
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Adding a hard photon to the final state of a leptonic pseudoscalar-meson decay lifts the helicity suppression and can provide sensitivity to a larger set of operators in the weak effective Hamiltonian. Furthermore, radiative leptonic $B$ decays at high photon energy are well suited to constrain the first inverse moment of the $B$-meson light-cone distribution amplitude, an important parameter in the theory of nonleptonic $B$ decays. We demonstrate that the calculation of radiative leptonic decays is possible using Euclidean lattice QCD, and present preliminary numerical results for $D_s^+ to ell^+ ugamma$ and $K^- to ell^-bar{ u}gamma$.



rate research

Read More

We develop a method to compute inclusive semi-leptonic decay rate of hadrons fully non-perturbatively using lattice QCD simulations. The sum over all possible final states is achieved by a calculation of the forward-scattering matrix elements on the lattice, and the phase-space integral is evaluated using their dependence on the time separation between two inserted currents. We perform a pilot lattice computation for the B_s -> X_c l nu decay with an unphysical bottom quark mass and compare the results with the corresponding OPE calculation. The method to treat the inclusive processes on the lattice can be applied to other processes, such as the lepton-nucleon inelastic scattering.
We present a non-perturbative lattice calculation of the form factors which contribute to the amplitudes for the radiative decays $Pto ell bar u_ell gamma$, where $P$ is a pseudoscalar meson and $ell$ is a charged lepton. Together with the non-perturbative determination of the corrections to the processes $Pto ell bar u_ell$ due to the exchange of a virtual photon, this allows accurate predictions at $O(alpha_{em})$ to be made for leptonic decay rates for pseudoscalar mesons ranging from the pion to the $D_s$ meson. We are able to separate unambiguously and non-pertubatively the point-like contribution, from the structure-dependent, infrared-safe, terms in the amplitude. The fully non-perturbative $O(a)$ improved calculation of the inclusive leptonic decay rates will lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa (CKM) matrix elements also at $O(alpha_{em})$. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also very interesting, especially for the decays of heavy $D$ and $B$ mesons for which currently only model-dependent predictions are available to compare with existing experimental data.
We present a non-perturbative calculation of the form factors which contribute to the amplitudes for the radiative decays $Pto ell bar u_ell gamma$, where $P$ is a pseudoscalar meson and $ell$ is a charged lepton. Together with the non-perturbative determination of the virtual photon corrections to the processes $Pto ell bar u_ell$, this will allow accurate predictions to be made at $O(alpha_{em})$ for leptonic decay rates for pseudoscalar mesons ranging from the pion to the $B$ meson. We are able to separate unambiguously the point-like contribution, the square of which leads to the infrared divergence in the decay rate, from the structure dependent, infrared-safe, terms in the amplitude. The fully non-perturbative, $O(a)$ improved calculation of the inclusive leptonic decay rates will lead to significantly improved precision in the determination of the corresponding Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. Precise predictions for the emission of a hard photon are also very interesting, especially for the decays of heavy $D$ and $B$ mesons for which currently only model-dependent predictions are available to compare with existing experimental data.
We report on a two-flavour lattice QCD study of the D_s and D_s^* leptonic decays parameterized by the decay constants f_{D_s} and f_{D_s^*}. As the phenomenology in the D_s sector seems very promising in the next years with the experiments LHCb and Belle II, it is worth putting a big effort in lattice computations regarding its non-perturbative QCD contributions. Before examining more challenging processes such as hadron-hadron transitions, a natural first step is to address some basic aspects in the context of leptonic decays, where systematic uncertainties from excited state contaminations and cut-off effects in the computation of charmed meson decay matrix elements can be investigated in a more straightforward setting.
Radiative decays of bottomonium are revisited, focusing on contributions from higher-order relativistic effects. The leading relativistic correction to the magnetic spin-flip operator at the photon vertex is found to be particularly important. The combination of O(v^6) effects in the nonrelativistic QCD action and in the transition operator moves previous lattice results for excited Upsilon decays into agreement with experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا