Do you want to publish a course? Click here

Spin-polarized electronic surface states of Re(0001): an ab-initio investigation

71   0   0.0 ( 0 )
 Added by Andrea Urru
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the electronic structure of the Re(0001) surface by means of ab-initio techniques based on the Fully Relativistic (FR) Density Functional Theory (DFT) and the Projector Augmented-Wave (PAW) method. We identify the main surface states and resonances and study in detail their energy dispersion along the main symmetry lines of the SBZ. Moreover, we discuss the effect of spin-orbit coupling on the energy splittings and the spin-polarization of the main surface states and resonances. Whenever possible, we compare the results with previously studied heavy metals surfaces. We find empty resonances, located below a gap similar to the L-gap of the (111) fcc surfaces, that have a downward dispersion and cross the Fermi level, similarly to the recently studied Os(0001) surface. Their spin polarization at the Fermi level is similar to that predicted by the Rashba model, but the usual level crossing at $bar{Gamma}$ is not found with our slab thickness. Moreover, for selected states, we follow the spin polarization along the high symmetry lines, discussing its behavior with respect to ${bf k}_{parallel}$, the wave-vector parallel to the surface.



rate research

Read More

We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and resonances analyzing their spin-orbit induced energy splitting and their spin polarization. The results are compared with previously studied surfaces Ir(111), Pt(111), and Au(111). We do not find any surface state in the gap similar to the L-gap of the (111) fcc surfaces, but find Rashba split resonances that cross the Fermi level and, as in the recently studied Ir(111) surface, have a characteristic downward dispersion. Moreover, for some selected surface states we study the spin polarization with respect to ${bf k}_{parallel}$, the wave-vector parallel to the surface. In some cases, such as the Rashba split resonances, the spin polarization shows a smooth behavior with slow rotations, in others the rotation is faster, due to mixing and anti-crossing of the states.
Most spectroscopic methods for studying the electronic structure of metal surfaces have the disadvantage that either only occupied or only unoccupied states can be probed, and the signal is cut at the Fermi edge. This leads to significant uncertainties, when states are very close to the Fermi level. By performing low-temperature scanning tunneling spectroscopy and ab initio calculations, we study the surface-electronic structure of La(0001) and Lu(0001), and demonstrate that in this way detailed information on the surface-electronic structure very close to the Fermi energy can be derived with high accuracy.
We study Ni80Fe20-based permalloys with the relativistic spin-polarized Korringa-Kohn-Rostoker electronic structure method. Treating the compositional disorder with the coherent potential approximation, we investigate how the magnetocrystalline anisotropy, K, and magnetostriction, lambda, of Ni-rich Ni-Fe alloys vary with the addition of small amounts of non-magnetic transition metals, Cu and Mo. From our calculations we follow the trends in K and lambda and find the compositions of Ni-Fe-Cu and Ni-Fe-Mo where both are near zero. These high permeability compositions of Ni-Fe-Cu and Ni-Fe-Mo match well with those discovered experimentally. We monitor the connection of the magnetic anisotropy with the number of minority spin electrons, Nmin. By raising Nmin via artificially increasing the band-filling of Ni80Fe20, we are able to reproduce the key features that underpin the magnetic softening we find in the ternary alloys. The effect of band-filling on the dependence of magnetocrystalline anisotropy on atomic short-range order in Ni80Fe20 is also studied. Our calculations, based on a static concentration wave theory, indicate that the susceptibility of the high permeability of the Ni-Fe-Cu and Ni-Fe-Mo alloys to their annealing conditions is also strongly dependent on the alloys compositions. An ideal soft magnet appears from these calculations.
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressure phase ice XIIIM (Refs. 1-2) (380GPa), ice XV (a new structure we derived from ice XIIIM) (300-380GPa), as well as the ambient pressure low-temperature phase ice XI. Different from many other materials, the band gap of ice X is found to be increasing linearly with pressure from 55GPa up to 290GPa, the electronic density of states (DOS) shows that the valence bands have a tendency of red shift (move to lower energies) referring to the Fermi energy while the conduction bands have a blue shift (move to higher energies). This behavior is interpreted as the high pressure induced change of s-p charge transfers between hydrogen and oxygen. It is found that ice X exists in the pressure range from 75GPa to about 290GPa. Beyond 300GPa, a new hydrogen-bonding structure with 50% hydrogen atoms in symmetric positions in O-H-O bonds and the other half being asymmetric, ice XV, is identified. The physical mechanism for this broken symmetry in hydrogen bonding is revealed.
We present a comprehensive ab initio investigation on Mg$_3$Bi$_2$, a promising Mg-ion battery anode material with high rate capacity. Through combined DFT (PBE, HSE06) and $G_0W_0$ electronic structure calculations, we find that Mg$_3$Bi$_2$ is likely to be a small band gap semiconductor. DFT-based defect formation energies indicate that Mg vacancies are likely to form in this material, with relativistic spin-orbit coupling significantly lowering the defect formation energies. We show that a transition state searching methodology based on the hybrid eigenvector-following approach can be used effectively to search for the transition states in cases where full spin-orbit coupling is included. Mg migration barriers found through this hybrid eigenvector-following approach indicate that spin-orbit coupling also lowers the migration barrier, decreasing it to a value of 0.34 eV with spin-orbit coupling. Finally, recent experimental results on Mg diffusion are compared to the DFT results and show good agreement. This work demonstrates that vacancy defects and the inclusion of relativistic spin-orbit coupling in the calculations have a profound effect in Mg diffusion in this material. It also sheds light on the importance of relativistic spin-orbit coupling in studying similar battery systems where heavy elements play a crucial role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا