Do you want to publish a course? Click here

Anisotropic halo assembly bias and redshift-space distortions

71   0   0.0 ( 0 )
 Added by Andrej Obuljen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effect of large-scale tidal fields on internal halo properties using a set of N-body simulations. We measure significant cross-correlations between large-scale tidal fields and several non-scalar halo properties: shapes, velocity dispersion, and angular momentum. Selection effects that couple to these non-scalar halo properties can produce anisotropic clustering even in real-space. We investigate the size of this effect and show that it can produce a non-zero quadrupole similar in size to the one generated by linear redshift-space distortions (RSD). Finally, we investigate the clustering properties of halos identified in redshift-space and find enormous deviations from the standard linear RSD model, again caused by anisotropic assembly bias. These effects could contaminate the values of cosmological parameters inferred from the observed redshift-space clustering of galaxies, groups, or 21cm emission from atomic hydrogen, if their selection depends on properties affected by halo assembly bias. We briefly discuss ways in which this effect can be measured in existing and future large-scale structure surveys.



rate research

Read More

We study potential systematic effects of assembly bias on cosmological parameter constraints from redshift space distortion measurements. We use a semi-analytic galaxy formation model applied to the Millennium N-body WMAP-7 simulation to study the effects of halo assembly bias on the redshift space distortions of the galaxy correlation function. We look at the pairwise velocities of galaxies living in haloes with concentrations and ages in the upper and lower quintiles, and find that the velocity differences between these are consistent with those reported for real-space clustering analyses, i.e. samples with higher clustering also exhibit stronger infall pairwise motions. This can also be seen in the monopole and quadrupole of the redshift-space correlation function. We find that regardless of the method of measurement, the changes in the $beta$ parameter due to different secondary halo parameters fully tracks the change in the bias Parameter. Hence, assembly bias does not introduce detectable systematics in the inferred logarithmic growth factor.
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f_NL, offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ~23% and ~48% for galaxies at z=1 selected by stellar mass and star formation rate, respectively.
We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function of voids and haloes in redshift space, both directly and in Fourier form. In linear theory, this cross-correlation contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes in N-body simulations; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the redshift-space cross-correlation function near its origin. By extracting the monopole and quadrupole from the cross-correlation function, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter $beta$ to 9% precision from an effective volume of 3(Gpc/h)^3 using voids with radius greater than 25Mpc/h. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve the measurement. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on $beta$ is reduced to approximately 5%. Contrary to the simple redshift-space distortion pattern in overdensities, voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient, with the latter two factors being determined by the cumulative density profile of voids. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.
We present evidence for halo assembly bias as a function of geometric environment. By classifying GAMA galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with geometric environment is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of geometric environment. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star-formation rate and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous star-formation rate is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star-formation and chemical enrichment histories, that approximately mimic GAMAs typical signal-to-noise and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
The two-point clustering of dark matter halos is influenced by halo properties besides mass, a phenomenon referred to as halo assembly bias. Using the depth of the gravitational potential well, $V_{rm max}$, as our secondary halo property, in this paper we present the first study of the scale-dependence assembly bias. In the large-scale linear regime, $rgeq10h^{-1}{rm Mpc},$ our findings are in keeping with previous results. In particular, at the low-mass end ($M_{rm vir}<M_{rm coll}approx10^{12.5}{rm M}_{odot}$), halos with high-$V_{rm max}$ show stronger large-scale clustering relative to halos with low-$V_{rm max}$ of the same mass, this trend weakens and reverses for $M_{rm vir}geq M_{rm coll}.$ In the nonlinear regime, assembly bias in low-mass halos exhibits a pronounced scale-dependent bump at $500h^{-1}{rm kpc}-5h^{-1}{rm Mpc},$ a new result. This feature weakens and eventually vanishes for halos of higher mass. We show that this scale-dependent signature can primarily be attributed to a special subpopulation of ejected halos, defined as present-day host halos that were previously members of a higher-mass halo at some point in their past history. A corollary of our results is that galaxy clustering on scales of $rsim1-2h^{-1}{rm Mpc}$ can be impacted by up to $sim15%$ by the choice of the halo property used in the halo model, even for stellar mass-limited samples.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا