In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurements to characterize topological systems is also addressed by studying the system electrical response as a function of the position and the distance of the normal electrode (tip). The results show how the signatures of topological order affect the electrical response of the analyzed systems, a subset of which being robust also against the effects of a moderate amount of disorder. The analysis of the internal modes of the nanodevices demonstrates that topological protection can be lost when quantum states of an initially isolated topological system are hybridized with those of the external reservoirs. The conclusions of this work could be useful in understanding the topological phases of nanowire-based mesoscopic devices.