Do you want to publish a course? Click here

Representation Learning of Music Using Artist, Album, and Track Information

70   0   0.0 ( 0 )
 Added by Jongpil Lee
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Supervised music representation learning has been performed mainly using semantic labels such as music genres. However, annotating music with semantic labels requires time and cost. In this work, we investigate the use of factual metadata such as artist, album, and track information, which are naturally annotated to songs, for supervised music representation learning. The results show that each of the metadata has individual concept characteristics, and using them jointly improves overall performance.



rate research

Read More

116 - Rafael Valle 2018
This paper describes computational methods for the visual display and analysis of music information. We provide a concise description of software, music descriptors and data visualization techniques commonly used in music information retrieval. Finally, we provide use cases where the described software, descriptors and visualizations are showcased.
Musical preferences have been considered a mirror of the self. In this age of Big Data, online music streaming services allow us to capture ecologically valid music listening behavior and provide a rich source of information to identify several user-specific aspects. Studies have shown musical engagement to be an indirect representation of internal states including internalized symptomatology and depression. The current study aims at unearthing patterns and trends in the individuals at risk for depression as it manifests in naturally occurring music listening behavior. Mental well-being scores, musical engagement measures, and listening histories of Last.fm users (N=541) were acquired. Social tags associated with each listeners most popular tracks were analyzed to unearth the mood/emotions and genres associated with the users. Results revealed that social tags prevalent in the users at risk for depression were predominantly related to emotions depicting Sadness associated with genre tags representing neo-psychedelic-, avant garde-, dream-pop. This study will open up avenues for an MIR-based approach to characterizing and predicting risk for depression which can be helpful in early detection and additionally provide bases for designing music recommendations accordingly.
Music generation is always interesting in a sense that there is no formalized recipe. In this work, we propose a novel dual-track architecture for generating classical piano music, which is able to model the inter-dependency of left-hand and right-hand piano music. Particularly, we experimented with a lot of different models of neural network as well as different representations of music, and the results show that our proposed model outperforms all other tested methods. Besides, we deployed some special policies for model training and generation, which contributed to the model performance remarkably. Finally, under two evaluation methods, we compared our models with the MuseGAN project and true music.
Modeling of music audio semantics has been previously tackled through learning of mappings from audio data to high-level tags or latent unsupervised spaces. The resulting semantic spaces are theoretically limited, either because the chosen high-level tags do not cover all of music semantics or because audio data itself is not enough to determine music semantics. In this paper, we propose a generic framework for semantics modeling that focuses on the perception of the listener, through EEG data, in addition to audio data. We implement this framework using a novel end-to-end 2-view Neural Network (NN) architecture and a Deep Canonical Correlation Analysis (DCCA) loss function that forces the semantic embedding spaces of both views to be maximally correlated. We also detail how the EEG dataset was collected and use it to train our proposed model. We evaluate the learned semantic space in a transfer learning context, by using it as an audio feature extractor in an independent dataset and proxy task: music audio-lyrics cross-modal retrieval. We show that our embedding model outperforms Spotify features and performs comparably to a state-of-the-art embedding model that was trained on 700 times more data. We further discuss improvements to the model that are likely to improve its performance.
We introduce a novel playlist generation algorithm that focuses on the quality of transitions using a recurrent neural network (RNN). The proposed model assumes that optimal transitions between tracks can be modelled and predicted by internal transitions within music tracks. We introduce modelling sequences of high-level music descriptors using RNNs and discuss an experiment involving different similarity functions, where the sequences are provided by a musical structural analysis algorithm. Qualitative observations show that the proposed approach can effectively model transitions of music tracks in playlists.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا