Do you want to publish a course? Click here

Sensitivity analysis of the chiral magnetic effect observables using a multiphase transport model

66   0   0.0 ( 0 )
 Added by Guo-Liang Ma
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Because the traditional observable of charge-dependent azimuthal correlator $gamma$ contains both contributions from the chiral magnetic effect (CME) and its background, a new observable of $R_{Psi_{m}}$ has been recently proposed which is expected to be able to distinguish the CME from the background. In this study, we apply two methods to calculate $R_{Psi_{m}}$ using a multiphase transport model without or with introducing a percentage of CME-induced charge separation. We demonstrate that the shape of final $R_{Psi_{2}}$ distribution is flat for the case without the CME, but concave for that with an amount of the CME, because the initial CME signal survives from strong final state interactions. By comparing the responses of $R_{Psi_{2}}$ and $gamma$ to the strength of the initial CME, we observe that two observables show different nonlinear sensitivities to the CME. We find that the shape of $R_{Psi_{2}}$ has an advantage in measuring a small amount of the CME, although it requires large event statistics.



rate research

Read More

Because the properties of the QCD phase transition and the chiral magnetic effect (CME) depend on the number of quark flavors ($N_{f}$) and quark mass, relativistic heavy-ion collisions provide a natural environment to investigate the flavor features if quark deconfinement occurs. We introduce an initial two-flavor or three-flavor dipole charge separation into a multiphase transport (AMPT) model to investigate the flavor dependence of the CME. By taking advantage of the recent ALICE data of charge azimuthal correlations with identified hadrons, we attempt to disentangle two-flavor and three-flavor CME scenarios in Pb+Pb collisions at 2.76 TeV. We find that the experimental data show a certain potential to distinguish the two scenarios, therefore we further suggest to collect more data to clarify the possible flavor dependence in future experiments.
The chiral magnetic effect (CME) induces an electric charge separation in a chiral medium along the magnetic field that is mostly produced by spectator protons in heavy-ion collisions. The experimental searches for the CME, based on the charge-dependent angular correlations ($gamma$), however, have remained inconclusive, because the non-CME background contributions are not well understood. Experimentally, the $gamma$ correlators have been measured with respect to the second-order ($Psi_{2}$) and the third-order ($Psi_{3}$) symmetry planes, defined as $gamma_{112}$ and $gamma_{123}$, respectively. The expectation was that with a proper normalization, $gamma_{123}$ would provide a data-driven estimate for the background contributions in $gamma_{112}$. In this work, we calculate different harmonics of the $gamma$ correlators using a charge-conserving version of a multiphase transport (AMPT) model to examine the validity of the said assumption. We find that the pure-background AMPT simulations do not yield an equality in the normalized $gamma_{112}$ and $gamma_{123}$, quantified by $kappa_{112}$ and $kappa_{123}$, respectively. Furthermore, we test another correlator, $gamma_{132}$, within AMPT, and discuss the relation between different $gamma$ correlators.
110 - Ling Huang , Guo-Liang Ma 2021
The moments and moment products of conserved charges are believed to be sensitive to critical fluctuations, which have been adopted in determining the QCD critical point. Using a dynamical multiphase transport model, we reproduce the centrality and energy dependences of moments and moment products of net-charge multiplicity distributions in Au+Au collisions measured by the Beam Energy Scan program at the RHIC. No non-monotonic energy dependence is observed. We infer that the moment products develop during the dynamical evolution of heavy-ion collisions. The observed difference based on the expectation of the Poisson baseline indicates a positive two-particle correlation between positively and negatively charged particles, which can arise from different dynamical processes at different stages. Therefore, to adopt moments and moment products of net-charge multiplicity distributions in determining the QCD critical point of relativistic heavy-ion collisions, it is essential to take the dynamical evolution.
Using the string melting version of a multiphase transport (AMPT) model, we focus on the evolution of thermodynamic properties of the central cell of parton matter produced in Au+Au collisions ranging from 200 GeV down to 2.7 GeV. The temperature and baryon chemical potential are calculated for Au+Au collisions at different energies to locate their evolution trajectories in the QCD phase diagram. The evolution of pressure anisotropy indicates that only partial thermalization can be achieved, especially at lower energies. Through event-by-event temperature fluctuations, we present the specific heat of the partonic matter as a function of temperature and baryon chemical potential that is related to the partonic matters approach to equilibrium.
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. In this Letter, we show that the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at $sqrt{s_{rm NN}}=200$ GeV have more than $10%$ difference in the CME signal and less than $2%$ difference in the elliptic-flow-driven backgrounds for the centrality range of $20-60%$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا