Do you want to publish a course? Click here

Distortion-Aware Linear Precoding for Millimeter-Wave Multiuser MISO Downlink

123   0   0.0 ( 0 )
 Added by Sina Rezaei Aghdam
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this work, we propose an iterative scheme for computing a linear precoder that takes into account the impact of hardware impairments in the multiuser multiple-input single-output downlink. We particularly focus on the case when the transmitter is equipped with nonlinear power amplifiers. Using Bussgangs theorem, we formulate a lower bound on the achievable sum rate in the presence of hardware impairments, and maximize it using projected gradient ascent. We provide numerical examples that demonstrate the efficacy of the proposed distortion-aware scheme for precoding over a millimeter-wave~channel.



rate research

Read More

We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system and in presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions in the direction of the users. We show that, by taking into account PA nonlinearity characteristics, one can design linear precoders that reduce, and in single-user scenarios, even remove completely the distortion transmitted in the direction of the users. This, however, is achieved at the price of a considerably reduced array gain. To address this issue, we present precoder optimization algorithms which simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix maximizing this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix minimizing the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques yield considerable improvements in terms of spectral and energy efficiency compared to conventional linear precoding techniques.
136 - Kai Chen , Jing Yang , Xiaohu Ge 2019
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains by handing over part of the coding work to the phase shifting network, which can effectively improve energy efficiency. However, conventional hybrid precoding algorithms based on mathematical means often suffer from performance loss and high computational complexity. In this paper, a novel BP-neural-network-enabled hybrid precoding algorithm is proposed, in which the full-digital zero-forcing(ZF) precoding is set as the training target. Considering that signals at the base station are complex, we choose the complex neural network that has a richer representational capacity. Besides, we present the activation function of the complex neural network and the gradient derivation of the back propagation process. Simulation results demonstrate that the performance of the proposed hybrid precoding algorithm can optimally approximate the ZF precoding.
In this correspondence, we propose a space domain index modulation (IM) scheme for the downlink of multiuser multiple-input multiple-output (MU-MIMO) systems. Instead of the most common approach where spatial bits select active receiver antennas, in the presented scheme the spatial information is mapped onto the transmitter side. This allows IM to better exploit large dimensional antenna settings which are typically easier to deploy at the base station. In order to mitigate inter-user interference and allow single user detection, a precoder is adopted at the BS. Furthermore two alternative enhanced signal construction methods are proposed for minimizing the transmitted power or enable an implementation with a reduced number of RF chains. Simulation results for different scenarios show that the proposed approach can be an attractive alternative to conventional precoded MU-MIMO.
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multipath fading model, thus using accurate inter-group interference modeling. The base station (BS) employs a large Uniform Planar Array (UPA) to facilitate massive Multiple-Input, Multiple-Output (MIMO) communications with high efficiency. UEs are equipped with a single antenna and are distributed uniformly within the cell. The key problem is analyzing and defining groups toward precoding. Because equitable type of throughput is desired between groups, Combined Frequency and Spatial Division and Multiplexing (CFSDM) prevails as necessary. We show that by employing three subcarrier frequencies, the UEs can be efficiently separated into high throughput groups, with each group employing Virtual Channel Model Beams (VCMB) based inner precoding, followed by efficient Multi-User Multiple-Input Multiple-Output (MU-MIMO) outer precoders. For each group, we study three different sub-grouping methods offering different advantages. We show that the improvement offered by Zero-Forcing Per-Group Precoding (ZF-PGP) over Zero-Forcing Precoding (ZFP) is very high.
107 - Gui Zhou , Cunhua Pan , Hong Ren 2021
Channel estimation in the RIS-aided massive multiuser multiple-input single-output (MU-MISO) wireless communication systems is challenging due to the passive feature of RIS and the large number of reflecting elements that incur high channel estimation overhead. To address this issue, we propose a novel cascaded channel estimation strategy with low pilot overhead by exploiting the sparsity and the correlation of multiuser cascaded channels in millimeter-wave massive MISO systems. Based on the fact that the phsical positions of the BS, the RIS and users may not change in several or even tens of consecutive channel coherence blocks, we first estimate the full channel state information (CSI) including all the angle and gain information in the first coherence block, and then only re-estimate the channel gains in the remaining coherence blocks with much less pilot overhead. In the first coherence block, we propose a two-phase channel estimation method, in which the cascaded channel of one typical user is estimated in Phase I based on the linear correlation among cascaded paths, while the cascaded channels of other users are estimated in Phase II by utilizing the partial CSI of the common base station (BS)-RIS channel obtained in Phase I. The total theoretical minimum pilot overhead in the first coherence block is $8J-2+(K-1)leftlceil (8J-2)/Lrightrceil $, where $K$, $L$ and $J$ denote the numbers of users, paths in the BS-RIS channel and paths in the RIS-user channel, respectively. In each of the remaining coherence blocks, the minimum pilot overhead is $JK$. Moreover, the training phase shift matrices at the RIS are optimized to improve the estimation performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا