In this paper we show that Soergel bimodules for finite Coxeter types have only finitely many equivalence classes of simple transitive $2$-representations and we complete their classification in all types but $H_{3}$ and $H_{4}$.
The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum $mathfrak{sl}_2$ representation category. It also establishes a precise relation between the simple transitive $2$-representations of both monoidal categories, which are indexed by bicolored $mathsf{ADE}$ Dynkin diagrams. Using the quantum Satake correspondence between affine $mathsf{A}_{2}$ Soergel bimodules and the semisimple quotient of the quantum $mathfrak{sl}_3$ representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive $2$-representations corresponding to tricolored generalized $mathsf{ADE}$ Dynkin diagrams.
We call a von Neumann algebra with finite dimensional center a multifactor. We introduce an invariant of bimodules over $rm II_1$ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify finite depth finite index connected hyperfinite $rm II_1$ multifactor inclusions $Asubset B$ in terms of the standard invariant (a unitary planar algebra), together with the restriction to $A$ of the unique Markov trace on $B$. The latter determines the modular distortion of the associated bimodule. Three crucial ingredients are Popas uniqueness theorem for such inclusions which are also homogeneous, for which the standard invariant is a complete invariant, a generalized version of the Ocneanu Compactness Theorem, and the notion of Morita equivalence for inclusions. Second, we classify fully faithful representations of unitary multifusion categories into bimodules over hyperfinite $rm II_1$ multifactors in terms of the modular distortion. Every possible distortion arises from a representation, and we characterize the proper subset of distortions that arise from connected $rm II_1$ multifactor inclusions.
Motivated by recent advances in the categorification of quantum groups at prime roots of unity, we develop a theory of 2-representations for 2-categories enriched with a p-differential which satisfy finiteness conditions analogous to those of finitary or fiat 2-categories. We construct cell 2-representations in this setup, and consider 2-categories stemming from bimodules over a p-dg category in detail. This class is of particular importance in the categorification of quantum groups, which allows us to apply our results to cyclotomic quotients of the categorifications of small quantum group of type $mathfrak{sl}_2$ at prime roots of unity by Elias-Qi [Advances in Mathematics 288 (2016)]. Passing to stable 2-representations gives a way to construct triangulated 2-representations, but our main focus is on working with p-dg enriched 2-representations that should be seen as a p-dg enhancement of these triangulated ones.
In this article we analyze the structure of $2$-categories of symmetric projective bimodules over a finite dimensional algebra with respect to the action of a finite abelian group. We determine under which condition the resulting $2$-category is fiat (in the sense of cite{MM1}) and classify simple transitive $2$-representations of this $2$-category (under some mild technical assumption). We also study several classes of examples in detail.
The main result of this paper establishes a bijection between the set of equivalence classes of simple transitive $2$-representations with a fixed apex $mathcal{J}$ of a fiat $2$-category $cC$ and the set of equivalence classes of faithful simple transitive $2$-representations of the fiat $2$-subquotient of $cC$ associated with a diagonal $mathcal{H}$-cell in $mathcal{J}$. As an application, we classify simple transitive $2$-representations of various categories of Soergel bimodules, in particular, completing the classification in types $B_3$ and $B_4$.