Do you want to publish a course? Click here

Extremely large magnetoresistance and compensated Fermi surfaces in the antiferromagnetic semimetal YbAs

282   0   0.0 ( 0 )
 Added by Michael Smidman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A number of rare-earth monopnictides have topologically non-trivial band structures together with magnetism and strong electronic correlations. In order to examine whether the antiferromagnetic (AFM) semimetal YbAs ($Trm_N$ = 0.5 K) exhibits such a scenario, we have grown high-quality single crystals using a flux method, and characterized the magnetic properties and electronic structure using specific heat, magnetotransport and angle-resolved photoemission spectroscopy (ARPES) measurements, together with density functional theory (DFT) calculations. Both ARPES and DFT calculations find no evidence for band



rate research

Read More

143 - Yongkang Luo , H. Li , Y. M. Dai 2015
We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50~K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50~K, which might be the direct driving force of the electron-hole ``compensation and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.
Extremely large magnetoresistance (XMR) was recently discovered in many non-magnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here, we report an investigation of the $alpha$-phase WP$_2$, a topologically trivial semimetal with monoclinic crystal structure (C2/m), which contrasts to the recently discovered robust type-II Weyl semimetal phase in $beta$-WP$_2$. We found that $alpha$-WP$_2$ exhibits almost all the characteristics of XMR materials: the near-quadratic field dependence of MR, a field-induced up-turn in resistivity following by a plateau at low temperature, which can be understood by the compensation effect, and high mobility of carriers confirmed by our Hall effect measurements. It was also found that the normalized MRs under different magnetic fields has the same temperature dependence in $alpha$-WP$_2$, the Kohler scaling law can describe the MR data in a wide temperature range, and there is no obvious change in the anisotropic parameter $gamma$ value with temperature. The resistance polar diagram has a peanut shape when field is rotated in $textit{ac}$ plane, which can be understood by the anisotropy of Fermi surface. These results indicate that both field-induced-gap and temperature-induced Lifshitz transition are not the origin of up-turn in resistivity in the $alpha$-WP$_2$ semimetal. Our findings establish $alpha$-WP$_2$ as a new reference material for exploring the XMR phenomena.
We report a detailed magnetotransport study on single crystals of PrBi. The presence of $f$-electrons in this material raises the prospect of realizing a strongly correlated version of topological semimetals. PrBi shows a magnetic field induced metal insulator transition below $T sim 20$ K and a very large magnetoresistance ($approx 4.4 times 10^4~$) at low temperatures ($T= 2$ K). We have also probed the Fermi surface topology by de Haas van Alphen (dHvA) and Shubnikov de Haas (SdH) quantum oscillation measurements complimented with density functional theory (DFT) calculations of the band structure and the Fermi surface. Angle dependence of the SdH oscillations have been carried out to probe the possible signature of surface Dirac fermions. We find three frequencies corresponding to one electron ($alpha$) and two hole ($beta$ and $gamma$) pockets in experiments, consistent with DFT calculations. The angular dependence of these frequencies is not consistent with a two dimensional Fermi surface suggesting that the transport is dominated by bulk bands. Although the transport properties of this material originate from the bulk bands, the high mobility and small effective mass are comparable to other compounds in this series proposed as topologically nontrivial.
We report the magnetoresistance of ScSb, which is a semimetal with a simple rocksalt-type structure. We found that the magnetoresistance reaches $sim$28000 % at 2 K and 14 T in our best sample, and it exhibits a resistivity plateau at low temperatures. The Shubnikov-de Haas oscillations extracted from the magnetoresistance data allow the full construction of the Fermi surface, including the so-called $alpha_3$ pocket which has been missing in other closely related monoantimonides, and an additional hole pocket centered at $Gamma$. The electron concentration ($n$) and the hole concentration ($p$) are extracted from our analysis, which indicate that ScSb is a nearly compensated semimetal with $n/papprox0.93$. The calculated band structure indicates the absence of a band inversion, and the large magnetoresistance in ScSb can be attributed to the nearly perfect compensation of electrons and holes, despite the existence of the additional hole pocket.
Electron-hole (e-h) compensation is a hallmark of multi-band semimetals with extremely large magnetoresistance (XMR) and has been considered to be the basis for XMR. Recent spectroscopic experiments, however, reveal that YSb with non-saturating magnetoresistance is uncompensated, questioning the e-h compensation scenario for XMR. Here we demonstrate with magnetoresistivity and angle dependent Shubnikov - de Haas (SdH) quantum oscillation measurements that YSb does have nearly perfect e-h compensation, with a density ratio of $0.95$ for electrons and holes. The density and mobility anisotropy of the charge carriers revealed in the SdH experiments allow us to quantitatively describe the magnetoresistance with an anisotropic multi-band model that includes contributions from all Fermi pockets. We elucidate the role of compensated multi-bands in the occurrence of XMR by demonstrating the evolution of calculated magnetoresistances for a single band and for various combinations of electron and hole Fermi pockets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا