Many-body synchronisation in a classical Hamiltonian system


Abstract in English

We study synchronisation between periodically driven, interacting classical spins undergoing a Hamiltonian dynamics. In the thermodynamic limit there is a transition between a regime where all the spins oscillate synchronously for an infinite time with a period twice as the driving period (synchronized regime) and a regime where the oscillations die after a finite transient (chaotic regime). We emphasize the peculiarity of our result, having been synchronisation observed so far only in driven-dissipative systems. We discuss how our findings can be interpreted as a period-doubling time crystal and we show that synchronisation can appear both for an overall regular and an overall chaotic dynamics.

Download