The mechanism of two-stage electron acceleration by backward stimulated Raman scattering (BSRS) and forward stimulated Raman scattering (FSRS) is demonstrated through relativistic Vlasov-Maxwell simulation. The theoretical model is given to judge the condition of two-stage electron acceleration. The electrons trapped by BSRS inducing Langmuir wave (LW) will be trapped and accelerated by FSRS LW directly in the high electron density region. The superthermal electrons with energy larger than the energy at the phase velocity of FSRS LW will be generated by two-stage acceleration. In the condition of Te=2.5keV, only when ne>0.138n_c, can the electrons trapped by BSRS LW be accelerated by the FSRS LW directly. And the optimal parameter region is 0.108nc< ne< 0.128nc in condition of Te=2.5keV to control BSRS and superthermal electrons to a low level.
The presence of multiple ion species can add additional branches to the IAW dispersion relation and change the Landau damping significantly. Different IAW modes excited by stimulated Brillouin scattering (SBS) and different SBS behaviors in several typical ignition hohlraum plasmas in the high-temperature and high-density region have been researched by Vlasov-Maxwell simulation. The slow mode in HeH or CH plasmas is the least damped mode and will be excited in SBS, while the fast mode in AuB plasmas is the least damped mode and will be excited in SBS. Due to strong Landau damping, the SBS in H or HeH plasmas is strong convective instability, while the SBS in AuB plasmas is absolute instability due to the weak Landau damping. However, although the SBS in CH plasmas is weak convective instability in the linear theory, the SBS will transform into absolute instability due to decreasing linear Landau damping by particles trapping. These results give a detail research of the IAW modes excitation and the properties of SBS in different species plasmas, thus providing the possibility of controlling SBS by increasing the linear Landau damping of the IAW by changing ion species.
We present the first 3D particle-in-cell simulations of laser driven sheath-based ion acceleration in a kilotesla-level applied magnetic field. The applied magnetic field creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath and results in a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The benefits of adding the magnetic field are downplayed in 2D simulations, which strongly suggests the feasibility of observing magnetic field effects under experimentally relevant conditions.
The influence of sinusoidal density modulation on the stimulated Raman scattering (SRS) reflectivity in inhomogeneous plasmas is studied by three-wave coupling equations, fully kinetic Vlasov simulations and particle in cell (PIC) simulations. Through the numerical solution of three-wave coupling equations, we find that the sinusoidal density modulation is capable of inducing absolute SRS even though the Rosenbluth gain is smaller than {pi}, and we give a region of modulational wavelength and amplitude that the absolute SRS can be induced, which agrees with early studies. The average reflectivity obtained by Vlasov simulations has the same trend with the growth rate of absolute SRS obtained by three-wave equations. Instead of causing absolute instability, modulational wavelength shorter than a basic gain length is able to suppress the inflation of SRS through harmonic waves. And, the PIC simulations qualitatively agree with our Vlasov simulations. Our results offer an alternative explanation of high reflectivity at underdense plasma in experiments, which is due to long-wavelength modulation, and a potential method to suppress SRS by using the short-wavelength modulation.
We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($gamma_{e/p} approx 15$), small divergence ($theta_{e/p} approx 10 - 20$ mrad), and high density ($n_{e/p}simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.
The single-pulse spectrum of self-amplified spontaneous emission (SASE) free electron lasers (FELs) is characterized by random fluctuations in frequency. The typical spectrum bandwidth for a hard x-ray FEL is in the range of 10-20 eV and is comparable with the distance between energy levels of valence electrons in atoms an molecules. We calculate the rate of transitions in a quantum three-level system with the energy difference of several eV caused by such radiation and show that for x-ray intensities in the range of $10^{20}$ W/cm$^2$ the probability of the transition over the duration of the x-ray pulse is large. We argue that this effect can be used to modify the spectrum of a SASE FEL potentially making it more narrow.
Q. S. Feng
,L. H. Cao
,Z. J. Liu
.
(2019)
.
"Superthermal electron generation by two-stage acceleration of backward and forward stimulated Raman scattering in high electron density region"
.
Qingsong Feng
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا