Do you want to publish a course? Click here

Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC telescopes

223   0   0.0 ( 0 )
 Added by Alessandra Lamastra
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starburst galaxies and star-forming active galactic nuclei (AGN) are among the candidate sources thought to contribute appreciably to the extragalactic gamma-ray and neutrino backgrounds. NGC 1068 is the brightest of the star-forming galaxies found to emit gamma rays from 0.1 to 50 GeV. Precise measurements of the high-energy spectrum are crucial to study the particle accelerators and probe the dominant emission mechanisms. We have carried out 125 hours of observations of NGC 1068 with the MAGIC telescopes in order to search for gamma-ray emission in the very high energy band. We did not detect significant gamma-ray emission, and set upper limits at 95% confidence level to the gamma-ray flux above 200 GeV f<5.1x10^{-13} cm^{-2} s ^{-1} . This limit improves previous constraints by about an order of magnitude and allows us to put tight constraints on the theoretical models for the gamma-ray emission. By combining the MAGIC observations with the Fermi-LAT spectrum we limit the parameter space (spectral slope, maximum energy) of the cosmic ray protons predicted by hadronuclear models for the gamma-ray emission, while we find that a model postulating leptonic emission from a semi-relativistic jet is fully consistent with the limits. We provide predictions for IceCube detection of the neutrino signal foreseen in the hadronic scenario. We predict a maximal IceCube neutrino event rate of 0.07 yr^{-1}.



rate research

Read More

We report on the detection of very-high energy (VHE, E>100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6 sigma above 100 GeV in 46 hr of stereo observations carried out between August 2010 and February 2011. The measured differential energy spectrum between 70 GeV and 500 GeV can be described by a power law with a steep spectral index of Gamma=-4.1+/-0.7stat+/-0.3syst, and the average flux above 100 GeV is F_{gamma}=(1.3+/-0.2stat+/-0.3syst) x 10^-11 cm^-2 s^-1. These results, combined with the power-law spectrum measured in the first two years of observations by the Fermi-LAT above 100 MeV, with a spectral index of Gamma ~ -2.1, strongly suggest the presence of a break or cut-off around tens of GeV in the NGC 1275 spectrum. The light curve of the source above 100 GeV does not show hints of variability on a month time scale. Finally, we report on the nondetection in the present data of the radio galaxy IC 310, previously discovered by the Fermi-LAT and MAGIC. The derived flux upper limit F^{U.L.}_{gamma} (>300 GeV)=1.2 x 10^-12 cm^-2 s^-1 is a factor ~ 3 lower than the mean flux measured by MAGIC between October 2009 and February 2010, thus confirming the year time-scale variability of the source at VHE.
Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy gamma rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hours between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced gamma-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10-12 photons cm-2 s-1 (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.
Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs): PKS 1510-089, PKS 1222+216 and 3C 279. The detection of FSRQs in the VHE range is challenging, mainly because of their steep soft spectra in the GeV-TeV regime. MAGIC has observed and detected all FSRQs known to be VHE emitters up to now and found that they exhibit very different behavior. The 2010 discovery of PKS 1222+216 (z = 0.432) with the fast variability observed, challenges simple one-zone emission models and more complicated scenarios have been proposed. 3C 279 is the most distant VHE gamma-ray emitting AGN (z = 0.536), which was discovered by MAGIC in 2006 and detected again in 2007. In 2011 MAGIC observed 3C 279 two times: first during a monitoring campaign and later observations were triggered by a flare detected with Fermi-LAT. We present the MAGIC results and the multiwavelength behavior during this flaring epoch. Finally, we report the 2012 detection of PKS 1510-089 (z = 0.36), together with its simultaneous multiwavelength data from optical to gamma-rays.
The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 x 10^{-13} TeV cm^{-2} s^{-1} for the Geminga pulsar and 3.5 x 10^{-12} TeV cm^{-2} s^{-1} for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.
The acceleration of particles up to GeV or higher energies in microquasars has been the subject of considerable theoretical and observational efforts in the past few years. Sco X-1 is a microquasar from which evidence of highly energetic particles in the jet has been found when it is in the so-called Horizontal Branch (HB), a state when the radio and hard X-ray fluxes are higher and a powerful relativistic jet is present. Here we present the first very high energy gamma-ray observations of Sco X-1 obtained with the MAGIC telescopes. An analysis of the whole dataset does not yield a significant signal, with 95% CL flux upper limits above 300 GeV at the level of 2.4x10^{-12} ph/cm^2/s. Simultaneous RXTE observations were conducted to search for TeV emission during particular X-ray states of the source. A selection of the gamma-ray data obtained during the HB based on the X-ray colors did not yield a signal either, with an upper limit of 3.4x10^{-12} ph/cm^2/s. These upper limits place a constraint on the maximum TeV luminosity to non-thermal X-ray luminosity of L_{VHE}/L_{ntX}<0.02, that can be related to a maximum TeV luminosity to jet power ratio of L_{VHE}/L_{j}<10^{-3}. Our upper limits indicate that the underlying high-energy emission physics in Sco X-1 must be inherently different from that of the hitherto detected gamma-ray binaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا