No Arabic abstract
Between 1761 and 1776, Christian Horrebow made regular observations of sunspots from Rundetaarn in Copenhagen. Based on these observations he writes in 1775 that it appears that after the course of a certain number of years, the appearance of the Sun repeats itself with respect to the number and size of the spots. Thus, Horrebow hypothesized the idea of a cyclic Sun several decades before Heinrich Schwabe discovered the solar cycle and estimated its period. This proves the ability of Horrebow as a sunspot observer. In this article, we present a general overview of the work of Christian Horrebow, including a brief biography and a complete bibliography. We also present a translation from Danish to English of his writings on sunspots in the Dansk Historisk Almanak. These writings include tables of daily sunspot measurements of which we discuss the completeness.
The number of spots on the surface of the Sun is one of the best tracers of solar variability we have. The sunspot number is not only known to change in phase with the 11-year solar cycles, but also to show variability on longer time scales. It is, however, not only the sunspot number that changes in connection with solar variability. The location of the spots on the solar surface is also known to change in phase with the 11-year solar cycle. This has traditionally been visualised in the so-called butterfly diagram, but this is only well constrained from the beginning of the 19th century. This is unfortunate, as knowledge about the butterfly diagram could aid our understanding of the variability and the Sun-Earth connection. As part of a larger review of the work done on sunspots by the Danish astronomer Christian Horrebow, we here present a reanalysis of Christian Horrebows notebooks covering the years 1761 and 1764 - 1777. These notebooks have been analysed in at least three earlier studies by Thiele (Astron. Nachr. 50, 257, 1859), dArrest (published in Wolf, Astron. Mitt. Eidgenoss. Sternwarte Zur. 4, 77, 1873) and Hoyt and Schatten (Solar Phys. 160, 387, 1995). In this article, we construct a complete record of sunspot positions covering the years 1761 and 1764 - 1777. The resulting butterfly diagram shows the characteristic structure known from observations in the 19th and 20th century. We do see some indications of equatorial sunspots in the observations we have from Cycle 1. However, in Cycle 2, which has much better coverage, we do not see such indications.
Based on the Chinese historical sunspots drawings, a data set consisting of the scanned images and all their digitized parameters from 1925 to 2015 have been constructed. In this paper, we briefly describe the developmental history of sunspots drawings in China. This paper describes the preliminary processing processes that strat from the initial data (inputing to the scanning equipment) to the parameters extraction, and finally summarizes the general features of this dataset. It is the first systematic project in Chinese solar-physics community that the historical observation of sunspots drawings were digitized. Our data set fills in an almost ninety years historical gap, which span 60 degrees from east to west and 50 degrees from north to south and have no continuous and detailed digital sunspot observation information. As a complementary to other sunspots observation in the world, our dataset provided abundant information to the long term solar cycles solar activity research.
The sunspot record is the only observational tracer of solar activity that provides a fundamental, multi-century reference. Its homogeneity has been largely maintained with a succession of long-duration visual observers. In this paper, we examine observations of one of the primary reference sunspot observers, Hisako Koyama. By consulting original archives of the National Museum of Nature and Science of Japan (hereafter, NMNS), we retrace the main steps of her solar-observing career, from 1945 to 1996. We also present the reconstruction of a full digital database of her sunspot observations at the NMNS, with her original drawings and logbooks. Here, we extend the availability of her observational data from 1947-1984 to 1945-1996. Comparisons with the international sunspot number (version 2) and with the group sunspot number series show a good global stability of Koyamas observations, with only temporary fluctuations over the main interval 1947-1982. Identifying drawings made by alternate observers throughout the series, we find that a single downward baseline shift in the record coincides with the partial contribution of replacement observers mostly after 1983. We determine the correction factor to bring the second part (1983-1996) to the same scale with Koyamas main interval (1947-1982). We find a downward jump by 9% after 1983, which then remains stable until 1996. Overall, the high quality of Koyamas observations with her life-long dedication leaves a lasting legacy of this exceptional personal achievement. With this comprehensive recovery, we now make the totality of this legacy directly accessible and exploitable for future research.
Aims. In this paper, we aim to study the time dependence of sunspot group areas in a large sample composed of various databases spanning over 130 years, used state-of-the-art statistical methods. Methods. For a carefully selected but unbiased sample, we use Bayesian modelling to fit the temporal evolution of the combined umbral and penumbral area of spot groups with a skew-normal function to determine the existence of any asymmetry in spot growth or decay. Our primary selection criteria guaranteed that only spot groups with a well-defined maximum area were taken into account. We also analysed the covariance of the resulting model parameters and their correlations with the physical parameters of the sunspots and the ongoing solar cycle. Results. Our results show that the temporal evolution of well-observed sunspot groups that reach at least 50 millionths of a solar hemisphere (MSH) at their maximum can be fitted surprisingly well with our model. Furthermore, we show significant asymmetry - described by a skew parameter of fitted curves - between the growing and decaying phases of analysed sunspot groups. In addition, we found a weak correlation between the values of skew parameters and the maximum area of sunspot groups and their hemispherical latitude.
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 AA images, which have 1.2arcsec spatial resolution, but become readily apparent with Hi-Cs five times better spatial resolution. We supplement Hi-C data with data from AIAs 193 AA passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-Cs 3-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, recently reported by cite{tian14}, and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the lightcurves of the BDs to test whether the Hi-C BDs have transition region (TR) temperature like that of the IRIS BDs. The lightcurves of most Hi-C BDs peak together in different AIA channels indicating that their temperature is likely in the range of the cooler TR ($1-4times 10^5$ K).