No Arabic abstract
A chemo-mechanical model for a finite-strain elasto-viscoplastic material containing multiple chemical components is formulated and an efficient numerical implementation is developed to solve the resulting transport relations. The numerical solution relies on inverting the constitutive model for the chemical potential. In this work, a semi-analytical inversion for a general family of multi-component regular-solution chemical free energy models is derived. This is based on splitting the chemical free energy into a convex contribution, treated implicitly, and a non-convex contribution, treated explicitly. This results in a reformulation of the system transport equations in terms of the chemical potential rather than the composition as the independent field variable. The numerical conditioning of the reformulated system, discretised by finite elements, is shown to be significantly improved, and convergence to the Cahn-Hilliard solution is demonstrated for the case of binary spinodal decomposition. Chemo-mechanically coupled binary and ternary spinodal decomposition systems are then investigated to illustrate the effect of anisotropic elastic deformation and plastic relaxation of the resulting spinodal morphologies in more complex material systems.
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structures, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points for Lagrangian-Eulerian interaction equations based on a previous work. In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. For the material model, we extend our previous fiber-based model to a continuum-based model. We first study a case in which a three-dimensional short tube is dilated. Results match very well with those from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size. To validate the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We present three cases that differ in the material model and muscle fiber architecture. The overall transport features are consistent with those from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case with spatially varying fiber architecture. We find this unique muscle fiber architecture could generate a so-called pressure transition zone. This suggests an important role of muscle fiber architecture in esophageal transport.
Current multi-component, multiphase pseudo-potential lattice Boltzmann models have thermodynamic inconsistencies that prevent them to correctly predict the thermodynamic phase behavior of partially miscible multi-component mixtures, such as hydrocarbon mixtures. This paper identifies these inconsistencies and attempts to design a thermodynamically consistent multi-component, multiphase pseudo-potential lattice Boltzmann model that allows mass transfer across the phase interfaces and is capable to predict the phase behavior of typically partially miscible hydrocarbon mixtures. The designed model defines the total interaction force for the entire phase and split the force into individual components. Through a properly derived force split factor associated with the volatility of each component, the model can achieve precise thermodynamic consistency in multi-component hydrocarbon mixtures, which is described by the iso-fugacity rule.
The capabilities of CP2K, a density-functional theory package and OMEN, a nano-device simulator, are combined to study transport phenomena from first-principles in unprecedentedly large nanostructures. Based on the Hamiltonian and overlap matrices generated by CP2K for a given system, OMEN solves the Schroedinger equation with open boundary conditions (OBCs) for all possible electron momenta and energies. To accelerate this core operation a robust algorithm called SplitSolve has been developed. It allows to simultaneously treat the OBCs on CPUs and the Schroedinger equation on GPUs, taking advantage of hybrid nodes. Our key achievements on the Cray-XK7 Titan are (i) a reduction in time-to-solution by more than one order of magnitude as compared to standard methods, enabling the simulation of structures with more than 50000 atoms, (ii) a parallel efficiency of 97% when scaling from 756 up to 18564 nodes, and (iii) a sustained performance of 15 DP-PFlop/s.
It has been a challenge to accurately simulate Li-ion diffusion processes in battery materials at room temperature using {it ab initio} molecular dynamics (AIMD) due to its high computational cost. This situation has changed drastically in recent years due to the advances in machine learning-based interatomic potentials. Here we implement the Deep Potential Generator scheme to textit{automatically} generate interatomic potentials for LiGePS-type solid-state electrolyte materials. This increases our ability to simulate such materials by several orders of magnitude without sacrificing {it ab initio} accuracy. Important technical aspects like the statistical error and size effects are carefully investigated. We further establish a reliable protocol for accurate computation of Li-ion diffusion processes at experimental conditions, by investigating important technical aspects like the statistical error and size effects. Such a protocol and the automated workflow allow us to screen materials for their relevant properties with much-improved efficiency. By using the protocol and automated workflow developed here, we obtain the diffusivity data and activation energies of Li-ion diffusion that agree well with the experiment. Our work paves the way for future investigation of Li-ion diffusion mechanisms and optimization of Li-ion conductivity of solid-state electrolyte materials.
Electronic nearsightedness is one of the fundamental principles governing the behavior of condensed matter and supporting its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning schemes that predict quantum mechanical observables -- such as the cohesive energy, the electron density, or a variety of response properties -- as a sum of atom-centred contributions, based on a short-range representation of atomic environments. One of the main shortcomings of these approaches is their inability to capture physical effects, ranging from electrostatic interactions to quantum delocalization, which have a long-range nature. Here we show how to build a multi-scale scheme that combines in the same framework local and non-local information, overcoming such limitations. We show that the simplest version of such features can be put in formal correspondence with a multipole expansion of permanent electrostatics. The data-driven nature of the model construction, however, makes this simple form suitable to tackle also different types of delocalized and collective effects. We present several examples that range from molecular physics, to surface science and biophysics, demonstrating the ability of this multi-scale approach to model interactions driven by electrostatics, polarization and dispersion, as well as the cooperative behavior of dielectric response functions.