No Arabic abstract
In this work, we explore the state-space formulation of a network process to recover, from partial observations, the underlying network topology that drives its dynamics. To do so, we employ subspace techniques borrowed from system identification literature and extend them to the network topology identification problem. This approach provides a unified view of the traditional network control theory and signal processing on graphs. In addition, it provides theoretical guarantees for the recovery of the topological structure of a deterministic continuous-time linear dynamical system from input-output observations even though the input and state interaction networks might be different. The derived mathematical analysis is accompanied by an algorithm for identifying, from data, a network topology consistent with the dynamics of the system and conforms to the prior information about the underlying structure. The proposed algorithm relies on alternating projections and is provably convergent. Numerical results corroborate the theoretical findings and the applicability of the proposed algorithm.
In this work, we explore the state-space formulation of network processes to recover the underlying structure of the network (local connections). To do so, we employ subspace techniques borrowed from system identification literature and extend them to the network topology inference problem. This approach provides a unified view of the traditional network control theory and signal processing on networks. In addition, it provides theoretical guarantees for the recovery of the topological structure of a deterministic linear dynamical system from input-output observations even though the input and state evolution networks can be different.
Data defined over a network have been successfully modelled by means of graph filters. However, although in many scenarios the connectivity of the network is known, e.g., smart grids, social networks, etc., the lack of well-defined interaction weights hinders the ability to model the observed networked data using graph filters. Therefore, in this paper, we focus on the joint identification of coefficients and graph weights defining the graph filter that best models the observed input/output network data. While these two problems have been mostly addressed separately, we here propose an iterative method that exploits the knowledge of the support of the graph for the joint identification of graph filter coefficients and edge weights. We further show that our iterative scheme guarantees a non-increasing cost at every iteration, ensuring a globally-convergent behavior. Numerical experiments confirm the applicability of our proposed approach.
Can evolving networks be inferred and modeled without directly observing their nodes and edges? In many applications, the edges of a dynamic network might not be observed, but one can observe the dynamics of stochastic cascading processes (e.g., information diffusion, virus propagation) occurring over the unobserved network. While there have been efforts to infer networks based on such data, providing a generative probabilistic model that is able to identify the underlying time-varying network remains an open question. Here we consider the problem of inferring generative dynamic network models based on network cascade diffusion data. We propose a novel framework for providing a non-parametric dynamic network model--based on a mixture of coupled hierarchical Dirichlet processes-- based on data capturing cascade node infection times. Our approach allows us to infer the evolving community structure in networks and to obtain an explicit predictive distribution over the edges of the underlying network--including those that were not involved in transmission of any cascade, or are likely to appear in the future. We show the effectiveness of our approach using extensive experiments on synthetic as well as real-world networks.
Signal processing and machine learning algorithms for data supported over graphs, require the knowledge of the graph topology. Unless this information is given by the physics of the problem (e.g., water supply networks, power grids), the topology has to be learned from data. Topology identification is a challenging task, as the problem is often ill-posed, and becomes even harder when the graph structure is time-varying. In this paper, we address the problem of dynamic topology identification by building on recent results from time-varying optimization, devising a general-purpose online algorithm operating in non-stationary environments. Because of its iteration-constrained nature, the proposed approach exhibits an intrinsic temporal-regularization of the graph topology without explicitly enforcing it. As a case-study, we specialize our method to the Gaussian graphical model (GGM) problem and corroborate its performance.
Gait as a biometric property for person identification plays a key role in video surveillance and security applications. In gait recognition, normally, gait feature such as Gait Energy Image (GEI) is extracted from one full gait cycle. However in many circumstances, such a full gait cycle might not be available due to occlusion. Thus, the GEI is not complete giving rise to a degrading in gait-based person identification rate. In this paper, we address this issue by proposing a novel method to identify individuals from gait feature when a few (or even single) frame(s) is available. To do so, we propose a deep learning-based approach to transform incomplete GEI to the corresponding complete GEI obtained from a full gait cycle. More precisely, this transformation is done gradually by training several auto encoders independently and then combining these as a uniform model. Experimental results on two public gait datasets, namely OULP and Casia-B demonstrate the validity of the proposed method in dealing with very incomplete gait cycles.