No Arabic abstract
Many economic-theoretic models incorporate finiteness assumptions that, while introduced for simplicity, play a real role in the analysis. Such assumptions introduce a conceptual problem, as results that rely on finiteness are often implicitly nonrobust; for example, they may depend upon edge effects or artificial boundary conditions. Here, we present a unified method that enables us to remove finiteness assumptions, such as those on market sizes, time horizons, and datasets. We then apply our approach to a variety of matching, exchange economy, and revealed preference settings. The key to our approach is Logical Compactness, a core result from Propositional Logic. Building on Logical Compactness, in a matching setting, we reprove large-market existence results implied by Fleiners analysis, and (newly) prove both the strategy-proofness of the man-optimal stable mechanism in infinite markets and an infinite-market version of Nguyen and Vohras existence result for near-feasible stable matchings with couples. In a trading-network setting, we prove that the Hatfield et al. result on existence of Walrasian equilibria extends to infinite markets. In a dynamic matching setting, we prove that Pereyras existence result for dynamic two-sided matching markets extends to a doubly infinite time horizon. Finally, beyond existence and characterization of solutions, in a revealed-preference setting we reprove Renys infinite-data version of Afriats theorem and (newly) prove an infinite-data version of McFadden and Richters characterization of rationalizable stochastic datasets.
In this paper we propose a theoretical model including a susceptible-infected-recovered-dead (SIRD) model of epidemic in a dynamic macroeconomic general equilibrium framework with agents mobility. The latter affect both their income (and consumption) and their probability of infecting and of being infected. Strategic complementarities among individual mobility choices drive the evolution of aggregate economic activity, while infection externalities caused by individual mobility affect disease diffusion. Rational expectations of forward looking agents on the dynamics of aggregate mobility and epidemic determine individual mobility decisions. The model allows to evaluate alternative scenarios of mobility restrictions, especially policies dependent on the state of epidemic. We prove the existence of an equilibrium and provide a recursive construction method for finding equilibrium(a), which also guides our numerical investigations. We calibrate the model by using Italian experience on COVID-19 epidemic in the period February 2020 - May 2021. We discuss how our economic SIRD (ESIRD) model produces a substantially different dynamics of economy and epidemic with respect to a SIRD model with constant agents mobility. Finally, by numerical explorations we illustrate how the model can be used to design an efficient policy of state-of-epidemic-dependent mobility restrictions, which mitigates the epidemic peaks stressing health system, and allows for trading-off the economic losses due to reduced mobility with the lower death rate due to the lower spread of epidemic.
Given a set of agents with approval preferences over each other, we study the task of finding $k$ matchings fairly representing everyones preferences. We model the problem as an approval-based multiwinner election where the set of candidates consists of all possible matchings and agents preferences over each other are lifted to preferences over matchings. Due to the exponential number of candidates in such elections, standard algorithms for classical sequential voting rules (such as those proposed by Thiele and Phragmen) are rendered inefficient. We show that the computational tractability of these rules can be regained by exploiting the structure of the approval preferences. Moreover, we establish algorithmic results and axiomatic guarantees that go beyond those obtainable in the general multiwinner setting. Assuming that approvals are symmetric, we show that proportional approval voting (PAV), a well-established but computationally intractable voting rule, becomes polynomial-time computable, and its sequential variant (seq-PAV), which does not provide any proportionality guarantees in general, fulfills a rather strong guarantee known as extended justified representation. Some of our positive computational results extend to other types of compactly representable elections with an exponential candidate space.
We study competition among contests in a general model that allows for an arbitrary and heterogeneous space of contest design, where the goal of the contest designers is to maximize the contestants sum of efforts. Our main result shows that optimal contests in the monopolistic setting (i.e., those that maximize the sum of efforts in a model with a single contest) form an equilibrium in the model with competition among contests. Under a very natural assumption these contests are in fact dominant, and the equilibria that they form are unique. Moreover, equilibria with the optimal contests are Pareto-optimal even in cases where other equilibria emerge. In many natural cases, they also maximize the social welfare.
Computing market equilibria is a problem of both theoretical and applied interest. Much research focuses on the static case, but in many markets items arrive sequentially and stochastically. We focus on the case of online Fisher markets: individuals have linear, additive utility and items drawn from a distribution arrive one at a time in an online setting. We define the notion of an equilibrium in such a market and provide a dynamics which converges to these equilibria asymptotically. An important use-case of market equilibria is the problem of fair division. With this in mind, we show that our dynamics can also be used as an online item-allocation rule such that the time-averaged allocations and utilities converge to those of a corresponding static Fisher market. This implies that other good properties of market equilibrium-based fair division such as no envy, Pareto optimality, and the proportional share guarantee are also attained in the online setting. An attractive part of the proposed dynamics is that the market designer does not need to know the underlying distribution from which items are drawn. We show that these convergences happen at a rate of $O(tfrac{log t}{t})$ or $O(tfrac{(log t)^2}{t})$ in theory and quickly in real datasets.
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper examines the effects of new information regarding competitors, seeking to determine what information the auctioneer should provide assuming the set of allowable bids is discrete. The rational strategy profile that maximizes the revenue of the auctioneer is the one where each bidder makes the highest possible bid that is lower than his valuation of the item. This strategy profile is an equilibrium for a large enough number of bidders, regardless of the information released. We compare the number of bidders needed for this profile to be an equilibrium under different information settings. We find that it becomes an equilibrium with fewer bidders when less additional information is made available to the bidders regarding the competition. It follows that when the number of bidders is a priori unknown, there are some advantages to the auctioneer to not reveal information.