Do you want to publish a course? Click here

Commensal discovery of four Fast Radio Bursts during Parkes Pulsar Timing Array observations

88   0   0.0 ( 0 )
 Added by Stefan Oslowski
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Parkes Pulsar Timing Array (PPTA) project monitors two dozen millisecond pulsars (MSPs) in order to undertake a variety of fundamental physics experiments using the Parkes 64m radio telescope. Since June 2017 we have been undertaking commensal searches for fast radio bursts (FRBs) during the MSP observations. Here, we report the discovery of four FRBs (171209, 180309, 180311 and 180714). The detected events include an FRB with the highest signal-to-noise ratio ever detected at the Parkes observatory, which exhibits unusual spectral properties. All four FRBs are highly polarized. We discuss the future of commensal searches for FRBs at Parkes.



rate research

Read More

The main goal of pulsar timing array experiments is to detect correlated signals such as nanohertz-frequency gravitational waves. Pulsar timing data collected in dense monitoring campaigns can also be used to study the stars themselves, their binary companions, and the intervening ionised interstellar medium. Timing observations are extraordinarily sensitive to changes in path length between the pulsar and the Earth, enabling precise measurements of the pulsar positions, distances and velocities, and the shapes of their orbits. Here we present a timing analysis of 25 pulsars observed as part of the Parkes Pulsar Timing Array (PPTA) project over time spans of up to 24 yr. The data are from the second data release of the PPTA, which we have extended by including legacy data. We make the first detection of Shapiro delay in four Southern pulsars (PSRs J1017$-$7156, J1125$-$6014, J1545$-$4550, and J1732$-$5049), and of parallax in six pulsars. The prominent Shapiro delay of PSR J1125$-$6014 implies a neutron star mass of $M_p = 1.5 pm 0.2 M_odot$ (68% credibility interval). Measurements of both Shapiro delay and relativistic periastron advance in PSR J1600$-$3053 yield a large but uncertain pulsar mass of $M_p = 2.06^{+0.44}_{-0.41}$ M$_odot$ (68% credibility interval). We measure the distance to PSR J1909$-$3744 to a precision of 10 lyr, indicating that for gravitational wave periods over a decade, the pulsar provides a coherent baseline for pulsar timing array experiments.
187 - R. N. Manchester 2012
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant red timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an extended PPTA data set that combines PPTA data with earlier Parkes timing data for these pulsars.
167 - J. B. Wang , G. Hobbs , W. Coles 2014
Anisotropic bursts of gravitational radiation produced by events such as super-massive black hole mergers leave permanent imprints on space. Such gravitational wave memory (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected.
The Parkes Pulsar Timing Array project aims to make a direct detection of a gravitational-wave background through timing of millisecond pulsars. In this article, the main requirements for that endeavour are described and recent and ongoing progress is outlined. We demonstrate that the timing properties of millisecond pulsars are adequate and that technological progress is timely to expect a successful detection of gravitational waves within a decade, or alternatively to rule out all current predictions for gravitational wave backgrounds formed by supermassive black-hole mergers.
136 - X. Yang , S.-B. Zhang , J.-S. Wang 2021
We have searched for weak fast radio burst (FRB) events using a database containing 568,736,756 transient events detected using the Parkes radio telescope between 1997 and 2001. In order to classify these pulses, and to identify likely FRB candidates, we used a machine learning algorithm based on ResNet. We identified 81 new candidate FRBs and provide details of their positions, event times, and dispersion measures. These events were detected in only one beam of the Parkes multibeam receiver. We used a relatively low S/N cutoff threshold when selecting these bursts and some have dispersion measures only slightly exceeding the expected Galactic contribution. We therefore present these candidate FRBs as a guide for follow-up observations in the search for repeating FRBs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا