Do you want to publish a course? Click here

Thresholded Quantum LIDAR -- Exploiting Photon-Number-Resolving Detection

140   0   0.0 ( 0 )
 Added by Lior Cohen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a technique that improves the signal-to-noise-ratio (SNR) of range-finding, sensing, and other light-detection applications. The technique filters out low photon numbers using photon-number-resolving detectors (PNRDs). This technique has no classical analog and cannot be done with classical detectors. We investigate the properties of our technique and show under what conditions the scheme surpasses the classical SNR. Finally, we simulate the operation of a rangefinder, showing improvement with a low number of signal samplings and confirming the theory with a high number of signal samplings.



rate research

Read More

133 - Daryl Achilles 2003
Detectors that can resolve photon number are needed in many quantum information technologies. In order to be useful in quantum information processing, such detectors should be simple, easy to use, and be scalable to resolve any number of photons, as the application may require great portability such as in quantum cryptography. Here we describe the construction of a time-multiplexed detector, which uses a pair of standard avalanche photodiodes operated in Geiger mode. The detection technique is analysed theoretically and tested experimentally using a pulsed source of weak coherent light.
Superconducting nanostrip photon detectors have been used as single photon detectors, which can discriminate only photons presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical quantum information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector.
The scheme for building stronger multi-mode twin beams from a greater number of identical twin beams sufficiently weak so that single-photon sensitive on/off detectors suffice in their detection is studied. Statistical properties of these compound twin beams involving the non-classicality are analyzed for intensities up to hundreds of photon pairs. Their properties are compared with those of the genuine twin beams that require photon-number-resolving detectors in their experimental investigations. The use of such compound twin beams for the generation of sub-Poissonian light and measurement of absorption with sub-shot-noise precision is analyzed. A suitable theoretical model for the compound twin beams is developed to interpret the experimental data.
We discuss a novel approach to the problem of creating a photon number resolving detector using the giant Kerr nonlinearities available in electromagnetically induced transparency. Our scheme can implement a photon number quantum non-demolition measurement with high efficiency ($sim$99%) using less than 1600 atoms embedded in a dielectric waveguide.
We present a method of directly obtaining the parity of a Gaussian state of light without recourse to photon-number counting. The scheme uses only a simple balanced homodyne technique, and intensity correlation. Thus interferometric schemes utilizing coherent or squeezed light, and parity detection may be practically implemented for an arbitrary photon flux. Specifically we investigate a two-mode, squeezed-light, Mach-Zehnder interferometer and show how the parity of the output state may be obtained. We also show that the detection may be described independent of the parity operator, and that this parity-by-proxy measurement has the same signal as traditional parity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا