No Arabic abstract
We study mixing between conventional and hybrid mesons in vector and axial vector charmonium using QCD Laplace sum-rules. We compute meson-hybrid cross correlators within the operator product expansion, taking into account condensate contributions up to and including those of dimension-six as well as composite operator renormalization-induced diagrams. Using measured masses of charmonium-like states as input, we probe known resonances for nonzero coupling to both conventional and hybrid meson currents, a signal for meson-hybrid mixing.
Axial vector $(J^{PC}=1^{++})$ charmonium and bottomonium hybrid masses are determined via QCD Laplace sum-rules. Previous sum-rule studies in this channel did not incorporate the dimension-six gluon condensate, which has been shown to be important for $1^{--}$ and $0^{-+}$ heavy quark hybrids. An updated analysis of axial vector charmonium and bottomonium hybrids is presented, including the effects of the dimension-six gluon condensate. The axial vector charmonium and bottomonium hybrid masses are predicted to be 5.13 GeV and 11.32 GeV, respectively. We discuss the implications of this result for the charmonium-like XYZ states and the charmonium hybrid multiplet structure observed in recent lattice calculations.
We use QCD Laplace sum-rules to study meson-hybrid mixing in vector ($1^{--}$) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multi-resonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the $J/psi$ and a 4.3~GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the $Upsilon(1S)$, $Upsilon(2S)$, $Upsilon(3S)$, and $Upsilon(4S)$.
Phenomenological Lagrangians that exhibit (broken) chiral symmetry as well as isospin violation suggest short-range charge symmetry breaking (CSB) nucleon-nucleon potentials with a $mbox{boldmath $sigma$}_1 !cdot!mbox{boldmath $sigma$}_2$ structure. This structure could be realized by the mixing of axial-vector ($1^+$) mesons in a single-meson exchange picture. The Coleman-Glashow scheme for $Delta I_{z}=1$ charge symmetry breaking applied to meson and baryon $SU(2)$ mass splittings suggests a universal scale. This scale can be extended to $Delta I=1$ nonstrange CSB transitions $langle a_1^circ|H_{em}|f_1rangle$ of size $-0.005$ GeV$^2$. The resulting nucleon-nucleon axial-vector meson exchange CSB potential then predicts $Delta I=1$ effects which are small.
We consider the fidelity of the vector meson dominance (VMD) assumption as an instrument for relating the electromagnetic vector-meson production reaction $e + p to e^prime + V + p$ to the purely hadronic process $V + p to V+p$. Analyses of the photon vacuum polarisation and the photon-quark vertex reveal that such a VMD Ansatz might be reasonable for light vector-mesons. However, when the vector-mesons are described by momentum-dependent bound-state amplitudes, VMD fails for heavy vector-mesons: it cannot be used reliably to estimate either a photon-to-vector-meson transition strength or the momentum dependence of those integrands that would arise in calculations of the different reaction amplitudes. Consequently, for processes involving heavy mesons, the veracity of both cross-section estimates and conclusions based on the VMD assumption should be reviewed, e.g., those relating to hidden-charm pentaquark production and the origin of the proton mass.
Using the axial-vector coupling and the electromagnetic form factors of the D and D* mesons in 2+1 flavor Lattice QCD, we compute the D*Dpi, DDrho and D*D*rho coupling constants, which play an important role in describing the charm hadron interactions in terms of meson-exchange models. We also extract the charge radii of D and D* mesons and determine the contributions of the light and charm quarks separately.