Do you want to publish a course? Click here

A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators

91   0   0.0 ( 0 )
 Added by Xun Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

It is common to encounter large-scale monotone inclusion problems where the objective has a finite sum structure. We develop a general framework for variance-reduced forward-backward splitting algorithms for this problem. This framework includes a number of existing deterministic and variance-reduced algorithms for function minimization as special cases, and it is also applicable to more general problems such as saddle-point problems and variational inequalities. With a carefully constructed Lyapunov function, we show that the algorithms covered by our framework enjoy a linear convergence rate in expectation under mild assumptions. We further consider Catalyst acceleration and asynchronous implementation to reduce the algorithmic complexity and computation time. We apply our proposed framework to a policy evaluation problem and a strongly monotone two-player game, both of which fall outside of function minimization.



rate research

Read More

We consider the problem of variance reduction in randomized controlled trials, through the use of covariates correlated with the outcome but independent of the treatment. We propose a machine learning regression-adjusted treatment effect estimator, which we call MLRATE. MLRATE uses machine learning predictors of the outcome to reduce estimator variance. It employs cross-fitting to avoid overfitting biases, and we prove consistency and asymptotic normality under general conditions. MLRATE is robust to poor predictions from the machine learning step: if the predictions are uncorrelated with the outcomes, the estimator performs asymptotically no worse than the standard difference-in-means estimator, while if predictions are highly correlated with outcomes, the efficiency gains are large. In A/A tests, for a set of 48 outcome metrics commonly monitored in Facebook experiments the estimator has over 70% lower variance than the simple difference-in-means estimator, and about 19% lower variance than the common univariate procedure which adjusts only for pre-experiment values of the outcome.
146 - Zhiyan Ding , Qin Li 2020
Sampling from a log-concave distribution function is one core problem that has wide applications in Bayesian statistics and machine learning. While most gradient free methods have slow convergence rate, the Langevin Monte Carlo (LMC) that provides fast convergence requires the computation of gradients. In practice one uses finite-differencing approximations as surrogates, and the method is expensive in high-dimensions. A natural strategy to reduce computational cost in each iteration is to utilize random gradient approximations, such as random coordinate descent (RCD) or simultaneous perturbation stochastic approximation (SPSA). We show by a counter-example that blindly applying RCD does not achieve the goal in the most general setting. The high variance induced by the randomness means a larger number of iterations are needed, and this balances out the saving in each iteration. We then introduce a new variance reduction approach, termed Randomized Coordinates Averaging Descent (RCAD), and incorporate it with both overdamped and underdamped LMC. The methods are termed RCAD-O-LMC and RCAD-U-LMC respectively. The methods still sit in the random gradient approximation framework, and thus the computational cost in each iteration is low. However, by employing RCAD, the variance is reduced, so the methods converge within the same number of iterations as the classical overdamped and underdamped LMC. This leads to a computational saving overall.
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. More precisely, we interpret a large class of stochastic optimization methods as procedures that iteratively minimize a surrogate of the objective, which covers the stochastic gradient descent method and variants of the incremental approaches SAGA, SVRG, and MISO/Finito/SDCA. This point of view has several advantages: (i) we provide a simple generic proof of convergence for all of the aforementioned methods; (ii) we naturally obtain new algorithms with the same guarantees; (iii) we derive generic strategies to make these algorithms robust to stochastic noise, which is useful when data is corrupted by small random perturbations. Finally, we propose a new accelerated stochastic gradient descent algorithm and an accelerated SVRG algorithm with optimal complexity that is robust to stochastic noise.
The stochastic contextual bandit problem, which models the trade-off between exploration and exploitation, has many real applications, including recommender systems, online advertising and clinical trials. As many other machine learning algorithms, contextual bandit algorithms often have one or more hyper-parameters. As an example, in most optimal stochastic contextual bandit algorithms, there is an unknown exploration parameter which controls the trade-off between exploration and exploitation. A proper choice of the hyper-parameters is essential for contextual bandit algorithms to perform well. However, it is infeasible to use offline tuning methods to select hyper-parameters in contextual bandit environment since there is no pre-collected dataset and the decisions have to be made in real time. To tackle this problem, we first propose a two-layer bandit structure for auto tuning the exploration parameter and further generalize it to the Syndicated Bandits framework which can learn multiple hyper-parameters dynamically in contextual bandit environment. We show our Syndicated Bandits framework can achieve the optimal regret upper bounds and is general enough to handle the tuning tasks in many popular contextual bandit algorithms, such as LinUCB, LinTS, UCB-GLM, etc. Experiments on both synthetic and real datasets validate the effectiveness of our proposed framework.
126 - Zhiyan Ding , Qin Li 2020
Langevin Monte Carlo (LMC) is a popular Bayesian sampling method. For the log-concave distribution function, the method converges exponentially fast, up to a controllable discretization error. However, the method requires the evaluation of a full gradient in each iteration, and for a problem on $mathbb{R}^d$, this amounts to $d$ times partial derivative evaluations per iteration. The cost is high when $dgg1$. In this paper, we investigate how to enhance computational efficiency through the application of RCD (random coordinate descent) on LMC. There are two sides of the theory: 1 By blindly applying RCD to LMC, one surrogates the full gradient by a randomly selected directional derivative per iteration. Although the cost is reduced per iteration, the total number of iteration is increased to achieve a preset error tolerance. Ultimately there is no computational gain; 2 We then incorporate variance reduction techniques, such as SAGA (stochastic average gradient) and SVRG (stochastic variance reduced gradient), into RCD-LMC. It will be proved that the cost is reduced compared with the classical LMC, and in the underdamped case, convergence is achieved with the same number of iterations, while each iteration requires merely one-directional derivative. This means we obtain the best possible computational cost in the underdamped-LMC framework.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا