Do you want to publish a course? Click here

On edge-primitive graphs with soluble edge-stabilizers

98   0   0.0 ( 0 )
 Added by Zai Ping Lu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A graph is edge-primitive if its automorphism group acts primitively on the edge set, and 2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs. In this paper, we present a classification for those edge-primitive graphs which are 2-arc-transitive and have soluble edge-stabilizers.



rate research

Read More

This paper begins the classification of all edge-primitive 3-arc-transitive graphs by classifying all such graphs where the automorphism group is an almost simple group with socle an alternating or sporadic group, and all such graphs where the automorphism group is an almost simple classical group with a vertex-stabiliser acting faithfully on the set of neighbours.
80 - Zaiping Lu 2018
A graph is edge-primitive if its automorphism group acts primitively on the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive graph has almost simple automorphism group if it is neither a cycle nor a complete bipartite graph. We also present two examples of such graphs, which are 3-arc-transitive and have faithful vertex-stabilizers.
78 - Gareth A. Jones 2019
Building on earlier work of Biggs, James, Wilson and the author, and using the Graver-Watkins description of the 14 classes of edge-transitive maps, we complete the classification of the edge-transitive embeddings of complete graphs.
Let $G$ be a transitive permutation group on a finite set $Omega$ and recall that a base for $G$ is a subset of $Omega$ with trivial pointwise stabiliser. The base size of $G$, denoted $b(G)$, is the minimal size of a base. If $b(G)=2$ then we can study the Saxl graph $Sigma(G)$ of $G$, which has vertex set $Omega$ and two vertices are adjacent if they form a base. This is a vertex-transitive graph, which is conjectured to be connected with diameter at most $2$ when $G$ is primitive. In this paper, we combine probabilistic and computational methods to prove a strong form of this conjecture for all almost simple primitive groups with soluble point stabilisers. In this setting, we also establish best possible lower bounds on the clique and independence numbers of $Sigma(G)$ and we determine the groups with a unique regular suborbit, which can be interpreted in terms of the valency of $Sigma(G)$.
151 - Daniel T. Nagy 2016
We investigate the number of 4-edge paths in graphs with a fixed number of vertices and edges. An asymptotically sharp upper bound is given to this quantity. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge density. An easy lower bound is also proved. This answer resembles the classic theorem of Ahlswede and Katona about the maximal number of 2-edge paths, and a recent theorem of Kenyon, Radin, Ren and Sadun about k-edge stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا